K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2020

\(\frac{x-2}{18}-\frac{2x+5}{12}>\frac{x+6}{9}-\frac{x-3}{6}\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{36}-\frac{3\left(2x+5\right)}{36}>\frac{4\left(x+6\right)}{36}-\frac{6\left(x-3\right)}{36}\)

\(\Leftrightarrow2x-4-6x-15>4x+24-6x+18\)

\(\Leftrightarrow2x-6x-4x+6x>24+18+4+15\)

\(\Leftrightarrow-2x>61\)

\(\Leftrightarrow x< -\frac{61}{2}\)

Vậy nghiệm của bất phương trình là \(x< -\frac{61}{2}\)

8 tháng 7 2020

Bài b và c làm cách mình thì dễ hiểu hơn nhiều :3

\(\left(2x-2\right)\left(2x+3\right)\le0\)

TH1 : \(\hept{\begin{cases}2x-3\le0\\2x+3\ge0\end{cases}< =>\hept{\begin{cases}2x\le3\\2x\ge-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-\frac{3}{2}\end{cases}}\)

TH2 : \(\hept{\begin{cases}2x-3\ge0\\2x+3\le0\end{cases}< =>\hept{\begin{cases}2x\ge3\\2x\le-3\end{cases}}}\)

\(< =>\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-\frac{3}{2}\end{cases}}\)

Vậy ...

a) Ta có: \(x^2+\dfrac{9x^2}{\left(x+3\right)^2}=40\)

\(\Leftrightarrow\dfrac{\left(x^2+3x\right)^2+9x^2}{\left(x+3\right)^2}=40\)

\(\Leftrightarrow x^4+6x^3+9x^2+9x^2=40\left(x+3\right)^2\)

\(\Leftrightarrow x^4+6x^3+18x^2=40\left(x^2+6x+9\right)\)

\(\Leftrightarrow x^4+6x^3+18x^2-40x^2-240x-360=0\)

\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)

\(\Leftrightarrow x^4+2x^3+4x^3+8x^2-30x^2-60x-180x-360=0\)

\(\Leftrightarrow x^3\left(x+2\right)+4x^2\left(x+2\right)-30x\left(x+2\right)-180\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+4x^2-30x-180\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-6x^2+10x^2-60x+30x-180\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-6\right)+10x\left(x-6\right)+30\left(x-6\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\cdot\left(x-6\right)\left(x^2+10x+30\right)=0\)

mà \(x^2+10x+30>0\forall x\)

nên \(\left(x+2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=6\end{matrix}\right.\)

Vậy: S={-2;6}

b) Ta có: (m-1)x+3m-2=0

\(\Leftrightarrow\left(m-1\right)x=2-3m\)

\(\Leftrightarrow x=\dfrac{2-3m}{m-1}\)

Để phương trình có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{2-3m}{m-1}\ge1\)

\(\Leftrightarrow\dfrac{2-3m}{m-1}-1\ge0\)

\(\Leftrightarrow\dfrac{2-3m-\left(m-1\right)}{m-1}\ge0\)

\(\Leftrightarrow\dfrac{2-3m-m+1}{m-1}\ge0\)

\(\Leftrightarrow\dfrac{-4m+3}{m-1}\ge0\)

hay \(\dfrac{3}{4}\le m< 1\)

Vậy: Để phương trình (m-1)x+3m-2=0 có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{3}{4}\le m< 1\)

9 tháng 10 2017

Phép nhân và phép chia các đa thức

Câu a mình chắc chắn là đúng vì mình làm rồi.vui

Chúc bạn học tốt.

9 tháng 10 2017

b) \(-4x^2-4x-2\) <0 với mọi x

\(=-\left(4x^2+4x+2\right)\)

\(=-\left[\left(2x^2\right)+2.2x.1+1^2+2\right]\)

\(=-\left[\left(2x+1\right)^2+2\right]\)

\(=-\left(2x+1\right)^2-2\)

Nx : \(-\left(2x+1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(2x+1\right)^2-2< 0\) với mọi x

\(\Rightarrow-4x^2-4x-2< 0\) với mọi x

22 tháng 1 2022

a2(3x-1)-a(2x+3)=x-4 ⇔3a2x-a2-2ax-3a-x=-4 ⇔x(3a2-2a-1)=a2+3a-4

⇔x=\(\dfrac{a^2+3a-4}{3a^2-2a-1}\)>\(\dfrac{1}{3}\) ⇔3(a2+3a-4)>3a2-2a-1 ⇔ 3a2+9a-12 >3a2-2a-1

⇔11a-11>0 ⇔ a>1

18 tháng 1 2021

PT có nghiệm duy nhất khi và chỉ khi m - 1 khác 0, tức m khác 1.

Khi đó \(x=\dfrac{2-3m}{m-1}\).

\(x\ge1\Leftrightarrow\dfrac{2-3m}{m-1}\ge1\Leftrightarrow\dfrac{2-3m-m+1}{m-1}\ge0\Leftrightarrow\dfrac{3-4m}{m-1}\ge0\Leftrightarrow\dfrac{4}{3}\ge m>1\).

Vậy ....

25 tháng 6 2021

a) \(a^2-6a+10=\left(a^2-6a+9\right)+1=\left(a-3\right)^2+1\ge1\left(\forall a\right)\)

Dấu "=" xảy ra khi a = 3

b) \(4a^4-4a^3+a^2=a^2\left(4a^2-4a+1\right)=\left[a\left(2a-1\right)\right]^2\ge0\left(\forall a\right)\)

Dấu "=" xảy ra khi: \(\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

c) \(x^3+y^3=\frac{1}{3}\left(3x^3+3y^3\right)\)

\(=\frac{1}{3}\left[\left(x^3+x^3+y^3\right)+\left(x^3+y^3+y^3\right)\right]\ge\frac{1}{3}\left(3x^2y+3xy^2\right)=x^2y+xy^2\) (Cauchy)

Dấu "=" xảy ra khi: x = y