K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

a.

Ta có: \(405^n=......5\)

\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)

\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)

b.

\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)

\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)

Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên

\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

+ \(n+2=1\Leftrightarrow n=-1\) ( loại )

+ \(n+2=2\Leftrightarrow n=0\)

+ \(n+2=3\Leftrightarrow n=1\)

+ \(n+2=6\Leftrightarrow n=4\)

+ \(n+2=9\Leftrightarrow n=7\)

+ \(n+2=18\Leftrightarrow n=16\)

Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)

c.

Ta có \(55=5\cdot11\)\(\left(5;1\right)=1\)

Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)

\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)

+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)

+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)

5 tháng 11 2016

Chết thiếu câu c nữa

21 tháng 2 2020

Bài 1 : Thực hiện phép tính
a) 22 . 32 - 5 . 23

= 4 . 9 - 5 . 23

= 36 - 115

= -79

b) 52 . 2 + 20 : 22

= 25 . 2 + 20 : 4

= 50 + 5

= 55

Bài 2 : Tích A = 1.2.3.4....10 có chia hết cho 100 không?

A = 1 . 2 . 3 . 4 .... 10

A = (2 . 5 . 10) . 1 . 3 . 4 . 6 . 7 . 8 . 9

A = 100 . 1 . 3 . 4 . 6 . 7 . 8 . 9

⇒ Nên A chia hết cho 100

Bài 3 : Điền chữ số vào dấu * để đc số 35*

a) chia hết cho 2

⇒ 0; 2; 4; 6; 8

b) chia hết cho 5

⇒ 0; 5

c) chia hết cho cả 2 và 5

⇒ 0

Bài 4: chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 3)(n + 6) chia hết cho 2

❆ Nếu n là chẵn

\(\Rightarrow\left[{}\begin{matrix}\text{(n + 3) = lẻ}\\\text{(n + 6) = chẵn}\end{matrix}\right.\) \(\Rightarrow\text{(n + 3)(n + 6) = lẻ . chẵn = chẵn}\)

chẵn ⋮ 2

❆ Nếu n là lẻ

\(\Rightarrow\left[{}\begin{matrix}\text{(n + 3) = chẵn }\\\text{(n + 6) = lẻ}\end{matrix}\right.\)\(\text{(n + 3)(n + 6) = chẵn . lẻ = chẵn }\)

chẵn ⋮ 2

Vậy trong 2 trường hợp trên thì mọi số tự nhiên n đều chia hết cho 2

Bài 5: tìm các Ư của 12,7,1

Ư(12) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -12; 12}

Ư(7) = {-1; 1; -7; 7}

Ư(1) = {-1; 1}

Bài 6 tìm n sao cho :

a) 10 chia hết cho n

n ∈ Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}

➤ Vậy n ∈ {-1; 1; -2; 2; -5; 5; -10; 10}

b) (n + 2) là Ư của 20

n + 2 ∈ Ư(20) = {-1; 1; -2; 2; -4; 4; -5; 5; -10; 10; -20; 20}

Ta có bảng sau :

n + 2 -1 1 -2 2 -4 4 -5 5 -10 10 -20 20
n -3 -1 -4 0 -6 2 -7 3 -12 8 -22 18

➤ Vậy n ∈ {-3; -1; -4; 0; -6; 2; -7; 3; -12; 8; -22; 18}

c) 12 chia hết cho (n - 1)

n - 1 ∈ Ư(12) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -12; 12}

Ta có bảng sau :

n - 1 -1 1 -2 2 -3 3 -4 4 -6 6 -12 12
n 0 2 -1 3 -2 4 -3 5 -5 7 -11 13

➤ Vậy n ∈ {0; 2; -1; 3; -2; 4; -3; 5; -5; 7; -11; 13}

d) (2n + 3) là Ư của 10

2n + 3 ∈ Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}

Ta có bảng sau :

2n+3 -1 1 -2 2 -5 5 -10 10
2n -4 -2 -5 -1 -8 2 -13 7
n -2 -1 -2,5 -0,5 -4 1 -6,5 3,5

➤ Vậy n ∈ {-2 ; -1 ; -2,5 ; -0,5 ; -4 ; 1 ; -6,5 ; 3,5}

24 tháng 12 2015

a) 3n + 7 chia hết cho n

Ta có : 3n chia hết cho n

       Để 3n + 7 chia hết cho n

      thì 7 phải chia hết cho n

\(\Rightarrow\) \(\in\) \(Ư\left(7\right)=\left\{1;7\right\}\) 

Vậy n \(\in\left\{1;7\right\}\) .

24 tháng 12 2015

Trời ôi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Bài 1:So sánh các số sau: a)27^11 và 81^8 b)625^5 và 12567 c)5^36 và 11^24 d)3^2n và 2^3n Bài 2:So sánh các số sau: a)5^23 và 6.5^22 b)7.2^13 và 2^16 c)21^15 và 27^5.49^8 Bài 3:So sánh các số sau; a)199^20 và 2003^15 b)3^39 và 11^21 Bài 4:So sánh hai hiệu , hiệu nào...
Đọc tiếp

Bài 1:So sánh các số sau:

a)27^11 và 81^8 b)625^5 và 12567 c)5^36 và 11^24 d)3^2n và 2^3n

Bài 2:So sánh các số sau:

a)5^23 và 6.5^22 b)7.2^13 và 2^16 c)21^15 và 27^5.49^8

Bài 3:So sánh các số sau;

a)199^20 và 2003^15 b)3^39 và 11^21

Bài 4:So sánh hai hiệu , hiệu nào lớn hơn?

a)72^45-72^43 và 72^44-72^43

Bài 5: Tìm x thuộc N, biết;

a)16^x < 128^4 b)5^x.5^x+1.5^x+2 <hoặc bằng 100...........0:2^18(có 18 chữ số 0)

Bài 6:

Cho S=1+2+2^2+2^3+...+2^9.So sánh S với 5.2^8

Bài 7: Gọi m là số các số có 9 chữ số mà trong cách ghi của nó không có chữ số 0. Hãy so sánh m và 10.9^8

Bài 8: Hãy viết số lớn nhất bằng cách dùng 3 chữ số 1,2,3 với điều kiện mỗi chữ số dùng một và chỉ một lần

Bài 9: Tìm chữ số tận cùng của các số sau: 74^30;49^31;87632;33^58;23^35

Bài 10:Tìm hai chữ số tận cùng của số 5^n(n>1)

Bài 11: Chứng tỏ các tổng hiệu sau không chia hết cho 10

a)A=98.96.94.92-91.93.95.97

b)B=405^n+ 2^405+m (m,n thuộc N; n khác 0)

Bài 12: Tìm chữ số tận cùng của các số sau:

a)234^5^6^7 b)579^6^7^5

Bài 13: Cho S= 1+3^1+3^2+3^3+...+3^30.

Tìm chữ số tận cùng của S, từ đó suy ra S không phải là số chính phương.

Bài 14: Tím số nguyên tố a đẻ 4a+11 là số nguyên tố nhỏ hơn 30

Bài 15: Các số sau là số nguyên tố hay hợp số?

a=1.3.5.7...13+20 b=147.247.347-13

Bài 16: Cho n thuộc N*. Chứng minh rằng số 111....12111...1 là hợp số (111...1 gồm n số 1 ;111...1 cũng gồm n số 1)

Bài 17: Tìm số bị chia và thương trong phép chia:

9**:17=**, biết rằng thương là một số nguyên tố.

Bài 18 : Cho a,n thuộc N*, biết a^n chia hết cho 5. Chứng minh a^2+150 chia hết cho 25

Bài 19: a) Cho n là số không chia hết cho 3. Chứng minh rằng n^2 chia 3 dư 1.

b) Cho p là số nguyên tố lớn hơn 3. Hỏi p^2+2003 là số nguyên tố hay hợp số.

Bài 20:Cho n>2 và không chia hết cho 3. Chứng minh rằng hai số n^2-1 và n^2+1 không thể đồng thời là số nguyên tố.

Bài 21: Cho p và p+8 đều là số nguyên tố (p>3). Hỏi p+100 là số nguyên tố hay hợp số ?

Bài 22: Phân tích các số sau ra thừa số nguyên tố bằng cacchs hợp lý nhất;

a)700; 9000; 210000

b)500; 1600; 18000

Bài 23: Tìm số n thuộc n*,sao cho n^3 -n^2 + n-1 là số nguyên tố.

Bài 24: ƯCLN của hai số là 45. Số lớn là 270, tìm số nhỏ.

Bài 25: Tìm hai số biết tổng của chúng là 162 và ƯCLN của chúng là 18.

2
5 tháng 2 2017

Bài 7:

Có 9 cách chọn chữ số hàng trăm triệu.

Có 9 cách chọn chữ số hàng chục triệu

\(\Rightarrow m=9.9.9.9.9.9.9.9.9=9^9\)

\(m=9^9=9.9^8< 10.9^8\)

\(\Rightarrow m< 10.9^8\)

Bài 14:

Các số nguyên tố \(< 30\) và lớn hơn 15 là: \(19;23;29\)

Xét:

- Nếu \(4a+11=19\Rightarrow a=2\) (thỏa mãn)

- Nếu \(4a+11=23\Rightarrow a=3\) (thỏa mãn)

- Nếu \(4a+11=29\Rightarrow a=\frac{9}{2}\) (không thỏa mãn)

\(\Rightarrow a\in\left\{2;3\right\}\)

5 tháng 2 2017

Mỗi bạn làm hộ mình 1 câu thôi là hết ngay í mà . Cảm ơn các bạn nhìu lắm và khi nào các bạn đăng câu hỏi mình cũng sẽ trả lời cho nha

5 tháng 11 2017

Bạn nào giải thì giải chi tiết cho mình nha. Đúng thì mình like, bạn nào giải chi tiết hết được mình kêu bạn bè like cho nha. Mình đang cần gấp nên mong được sự giúp đỡ của các bạn. Cảm ơn ạ <3

2 tháng 6 2017

Đề: Chứng tỏ 4052+2405+m2 không chia hết cho 10

Giải

Ta có :dấu hiệu chia hết cho 10 là : chữ số tận cùng=0

Vậy ta phải tìm xem tổng trên có phải có chữ số tận cùng=0 hay không

Ta có 405n có tận cùng là 5(1 số có tận cùng =5 thì lũy thừa bao nhiêu cũng =5)

2405=(24)101.2=(...6)101.2=(...2)

m2là 1 số bình phương thì có tận cùng là 0;1;4;5;6;9

Vậy chữ số tận cùng của A=7;8;3;2;6

=)A không chia hết cho 10

22 tháng 9 2024

lời giải đúng quá bạn ơi thanksyeu