K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

a.

Ta có: \(405^n=......5\)

\(2^{405}=2^{404}\cdot2=\left(.......6\right)\cdot2=.......2\)

\(m^2\) là số chính phương nên có chữ số tận cùng khác 3. Vậy A có chữ số tận cùng khác 0 \(\Rightarrow A⋮10\)

b.

\(B=\frac{2n+9}{n+2}+\frac{5}{n+2}\frac{n+17}{ }-\frac{3n}{n+2}=\frac{2n+9+5n+17-3n}{n+2}=\frac{4n+26}{n+2}\)

\(B=\frac{4n+26}{n+2}=\frac{4\left(n+2\right)+18}{n+2}=4+\frac{18}{n+2}\)

Để B là số tự nhiên thì \(\frac{18}{n+2}\) là số tự nhiên

\(\Rightarrow18⋮\left(n+2\right)\Rightarrow n+2\inư\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

+ \(n+2=1\Leftrightarrow n=-1\) ( loại )

+ \(n+2=2\Leftrightarrow n=0\)

+ \(n+2=3\Leftrightarrow n=1\)

+ \(n+2=6\Leftrightarrow n=4\)

+ \(n+2=9\Leftrightarrow n=7\)

+ \(n+2=18\Leftrightarrow n=16\)

Vậy \(n\in\left\{0;1;4;7;16\right\}\) thì \(B\in N\)

c.

Ta có \(55=5\cdot11\)\(\left(5;1\right)=1\)

Do đó \(C=\overline{x1995y}⋮55\)\(\Leftrightarrow\)\(\begin{cases}C⋮5\\C⋮11\end{cases}\) \(\frac{\left(1\right)}{\left(2\right)}\)

\(\left(1\right)\Rightarrow y=0\) hoặc \(y=5\)

+ \(y=0\div\left(2\right)\Rightarrow x+9+5-\left(1+9+0\right)⋮11\Rightarrow x=7\)

+ \(y=5\div\left(2\right)\Rightarrow x+9+5-\left(1+9+5\right)⋮11\Rightarrow x=1\)

5 tháng 11 2016

Chết thiếu câu c nữa

25 tháng 5 2015

Ta có \(B=\frac{2n+2+5n+17-3n}{n+2}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{n+2}\)

              \(=\frac{4n+19}{n+2}=\frac{4n+8+11}{n+2}=\frac{4n+8}{n+2}+\frac{11}{n+2}=4+\frac{11}{n+2}\)

Để B là số tự nhiên \(\Leftrightarrow\frac{11}{n+2}\) là số tự nhiên

\(\Rightarrow\) n + 2 \(\in\) Ư(11) . Vì n là số tự nhiên \(\Leftrightarrow\) n + 2 \(\in\) {1 ; 11}

\(\Leftrightarrow\) n  = 9

25 tháng 5 2015

Ta có: \(\frac{2n+2}{2+n}+\frac{5n+17}{2+n}-\frac{3n}{2+n}=\frac{2n+2+5n+17-3n}{2+n}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{2+n}=\frac{4n+19}{2+n}\)

Để B là số tự nhiên thì 4n+19 : 2+n

=> 4*(n+2)-11:2+n

=> 11:2+n hay 2+n thuộc Ư(11)={1;11}

=> n =9. 

Vậy để B có giá trị là số nguyên thì n=9

(lưu ý: dấu : tức là chia hết cho)

Chúc bạn học tốt!^_^

Bài 1: Tìm số tự nhiên n, sao cho:a) 2n+5 chia hết cho n+1b) 4n-7 chia hết cho n-1c) 10-2n chia hết cho n-2d) 5n-8 chia hết cho 4-ne) n^2 +3n+6 chia hết cho n+3Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100a) chứng tỏ rằng A chia hết cho 2,3,15b) A là số Nguyên tố hay Hợp số? Vì sao ?c) Tìm chữ số tận cùng của ABài 3: Tìm ƯCLN a) 2n+1 và 3n+1b) 9n+13 và 3n+4c) 2n+1 và 2n+3Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số...
Đọc tiếp

Bài 1: Tìm số tự nhiên n, sao cho:

a) 2n+5 chia hết cho n+1

b) 4n-7 chia hết cho n-1

c) 10-2n chia hết cho n-2

d) 5n-8 chia hết cho 4-n

e) n^2 +3n+6 chia hết cho n+3

Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100

a) chứng tỏ rằng A chia hết cho 2,3,15

b) A là số Nguyên tố hay Hợp số? Vì sao ?

c) Tìm chữ số tận cùng của A

Bài 3: Tìm ƯCLN 

a) 2n+1 và 3n+1

b) 9n+13 và 3n+4

c) 2n+1 và 2n+3

Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:

a) 7n+10 và 5n+7

b) 2n+3 và 4n+7

Bài 5:Tìm số tự nhiên a,b

a) a x b=12

b) (a-1) (b+2)=7

c) a+b+72 và ƯCLN(a,b)+9

d) a x b= 300 và ƯCLN(a,b)=5

e) ƯCLN(a,b)=12 và BCNN(a,b)= 72

Bài 6 : Chứng tỏ rằng:

a) (10^n + 8 ) chia hết cho 9

b) (10^100+5^3) chia hết cho 3 và 9

c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )

d) (10^9 +10^8 +10^7) chia hết cho 555

Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn

ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!

26
20 tháng 11 2014

Bài 1:

a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N

=>n+1 thuộc {1;3}

=>n thuộc{0;2}

b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N

=>n-1 thuộc{-1;1;3}

=>n thuộc {1;2;4}

c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N

=>n-2 thuộc {-2;-1;1;2;7;14}

=>n thuộc {0;1;3;4;9;16}

d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N

=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28}

=>n thuộc{0;2;3;5;6;8;11;18;32}

e)n2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N

=>n-3 thuộc{-3;-2;-1;1;2;3;6}

=>n thuộc{0;1;2;4;5;6;9}

Bài 2:

a)A=2+22+23+...+2100 chia hết cho 2

A=2+22+23+24+...+299+2100

A=2(1+2)+23(1+2)+...+299(1+2) chia hết cho 1+2<=>A chia hết cho 3

A=2+22+23+24+25+26+27+28+...+297+298+299+2100

A=2(1+2+22+23)+24(1+2+22+23)+...+297(1+2+22+23)=>A chia hết cho 1+2+22+2<=>Achia hết cho 15

b)A chia hết cho 2 => A là hợp số

c)A=2+22+23+24+25+26+27+28+...+297+298+299+2100

A=(2+22+23+24)+(25+26+27+28)+...+(297+298+299+2100)

A=(24n1-3+24n1-3+24n1-1+24n1)+(24n2-3+24n2-3+24n2-1+24n2)+...+(24n25-3+24n25-3+24n25-1+24n25)

A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)

A=...0+...0+...+...0

A=0

20 tháng 11 2014

Bài 3:

a)gọi UCLN của 2n+1 và 3n+1 là d

2n+1 chia hết cho d => 6n+3 chia hết cho d 

3n+1 chia hết cho d =>6n+2 chia hết cho d 

=>6n+3-(6n+2) chia hết cho d 

1 chia hết cho d 

=>d =1=>UCLN cua 2n+1 va 3n+1 chia hết cho d  

b)Gọi UCLN cua 9n+13và 3n+4 là m

9n+13 chia hết cho m

3n+4 chia hết cho m=>9n+12 chia hết cho m

=>9n+13-(9n+12) chia hết cho m

1 chia hết cho m 

=> m=1

=> UCLN cua 9n+13 va 3n+4 là1

c) gọi UCLN cua 2n+1 và 2n+3 là n

2n+3 chia hết cho n

2n+1 chia hết cho n

2n+3-(2n+1) chia hết cho n

2chia hết cho n

n thuộc {1,2}

 => UCLN của 2n+1 và 2n+3 là 1 hoặc 2

Bài 1: Tìm số tự nhiên n, sao cho:a) 2n+5 chia hết cho n+1b) 4n-7 chia hết cho n-1c) 10-2n chia hết cho n-2d) 5n-8 chia hết cho 4-ne) n^2 +3n+6 chia hết cho n+3Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100a) chứng tỏ rằng A chia hết cho 2,3,15b) A là số Nguyên tố hay Hợp số? Vì sao ?c) Tìm chữ số tận cùng của ABài 3: Tìm ƯCLN a) 2n+1 và 3n+1b) 9n+13 và 3n+4c) 2n+1 và 2n+3Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số...
Đọc tiếp

Bài 1: Tìm số tự nhiên n, sao cho:

a) 2n+5 chia hết cho n+1

b) 4n-7 chia hết cho n-1

c) 10-2n chia hết cho n-2

d) 5n-8 chia hết cho 4-n

e) n^2 +3n+6 chia hết cho n+3

Bài 2: Cho A= 2+2^2+2^3+...+2^99+2^100

a) chứng tỏ rằng A chia hết cho 2,3,15

b) A là số Nguyên tố hay Hợp số? Vì sao ?

c) Tìm chữ số tận cùng của A

Bài 3: Tìm ƯCLN 

a) 2n+1 và 3n+1

b) 9n+13 và 3n+4

c) 2n+1 và 2n+3

Bài 4:Chứng minh rằng các Số tự nhiên sau đây là các số nguyên tố cùng nhau:

a) 7n+10 và 5n+7

b) 2n+3 và 4n+7

Bài 5:Tìm số tự nhiên a,b

a) a x b=12

b) (a-1) (b+2)=7

c) a+b+72 và ƯCLN(a,b)+9

d) a x b= 300 và ƯCLN(a,b)=5

e) ƯCLN(a,b)=12 và BCNN(a,b)= 72

Bài 6 : Chứng tỏ rằng:

a) (10^n + 8 ) chia hết cho 9

b) (10^100+5^3) chia hết cho 3 và 9

c) (n^2+n+1) không chia hết cho 2 và 5 (n thuộc N )

d) (10^9 +10^8 +10^7) chia hết cho 555

Bài 7: Chứng tỏ rằng với mọi số tự nhiên n thì ( n+4) (n+7) luôn là 1 số chẵn

ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh nhé trong ngày hôm nay nhé cố gắng giúp giùm !!!

3

dài thấy mợ luôn để t lm đc bài nào thì t lm

a)2n+5chia hết cho n+1<=>2(n+1)+3 chia hết cho n+1=>3 chia hết cho n+1 mà n thuộc N

=>n+1 thuộc {1;3}

=>n thuộc{0;2}

b)4n-7chia hết cho n-1<=>4(n-1)-3chia hết cho n-1=>3chia hết cho n-1 mà n thuộc N

=>n-1 thuộc{-1;1;3}

=>n thuộc {1;2;4}

c)10-2n chia hết cho n-2<=>14-2(n-2) chia hết cho n-2 =>14 chia hết cho n-2 mà n thuộc N

=>n-2 thuộc {-2;-1;1;2;7;14}

=>n thuộc {0;1;3;4;9;16}

d)5n-8 chia hết cho 4-n <=>5(4-n)-28 chia hết cho n-4=>28chia hết cho n-4 mà n thuộc N

=>n-4 thuộc {-4;-2;-1;1;2;4;7;14;28} 

=>n thuộc{0;2;3;5;6;8;11;18;32}

e)n^2+3n+6 chia hết cho n-3<=>-n(n-3)+6 chia hết cho n-3=>6 chia hết cho n-3 mà n thuộc N

=>n-3 thuộc{-3;-2;-1;1;2;3;6}

=>n thuộc{0;1;2;4;5;6;9}

Bài 2:

a)A=2+2^2+2^3+...+2^100  chia hết cho 2

A=2+2^2+2^3+2^4+...+2^99+2^100

A=2(1+2)+2^3 (1+2)+...+2^99 (1+2) chia hết cho 1+2<=>A chia hết cho 3

A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100

A=2(1+2+2^2+2^3 )+2^4 (1+2+2^2+2^3 )+...+2^97 (1+2+2^2+2^3 )=>A chia hết cho 1+2+2^2+2^3 <=>Achia hết cho 15

b)A chia hết cho 2 => A là hợp số.

c)A=2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+...+2^97+2^98+2^99+2^100

A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100 )

A=(24n1 -3+24n1 -3+24n1 -1+24n1)+(24n2 -3+24n2 -3+24n2 -1+24n2)+...+(24n25 -3+24n25 -3+24n25 -1+24n25)

A=(...2+...4+...8+...6)+(...2+...4+...8+...6)+...+(...2+...4+...8+...6)

A=...0+...0+...+...0.

A=....0

26 tháng 3 2018

Đề bài sai nha!

\(B=\frac{4n+2}{n+2}=\frac{4n+8-6}{n+2}\)

\(=4-\frac{6}{n+2}\)

Để B là stn thì 6/n+2 là stn.

=> 6 chia hết cho n+2

=> n+2 thuộc Ư(6)

 ......................(tự làm nhé)...........................

19 tháng 2 2020

B = \(\frac{2n+9}{n+2}\)\(\frac{5n+17}{n+2}\)-\(\frac{3n}{n+2}\)

B= \(\frac{2n+9+5n+17-3n}{n+2}\)

B= \(\frac{\left(2n+5n-3n\right)+9+17}{n+2}\)

B= \(\frac{4n+9+17}{n+2}\)\(\frac{4n+26}{n+2}\)

Để biểu thức B là số tự nhiên thì ( 4n+26) \(⋮\)n+2

=> n+2 \(⋮\)n+2

=> (4n+26) - 4(n+2)\(⋮\)n+2

=> 4n+26 - 4n - 8 \(⋮\)n+2

=> 18 \(⋮\)n+2

=> n+2 \(\in\)Ư(18)={1; 2; 9; 3; 6; 18; -1; -2; -9; -3; -6; -18}

=> N\(\in\){ -1; 0; 7; 1; 4; 16; -3; -4; -5; -11; -20; -8}

Vậy...

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên