Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:10^28+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1)
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2)
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72
Nếu chưa học thì giải zầy:
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1
=>10^28+8 chia hết cho 8.9=72
abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg)
= 11. (ab . 909 + cd . 9) +( ab + cd + eg)
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11
mà theo bài ra ab + cd + eg
Chia hết cho 11
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg
Vì 11\(⋮\)11
Vậy...
Vậy
Goi y
B1 X+3 chia het cho 5 7 9
B2 a ; Nhan x-1 vs 2 Roi tru cho nhau
b ; nhan x+1 vs 3
B3 nhan 3n +4 vs 4 ; 4n +5 vs3 roi tru
Câu 1: (n+3) (n+6) (1)
Ta xét 2 trường hợp:
+Nếu n là lẻ thì n+3 là chẵn, n+6 là lẻ. Tích giữa 1 số chẵn và 1 số lẻ là số chẵn => (n+3) (n+6) chia hết cho 2.
+Nếu n là chẵn thì n+3 là lẻ, n+6 là chẵn. Tích giữa 1 số lẻ và 1 số chẵn là số chẵn => (n+3) (n+6) chia hết cho 2.
Vậy với mọi số tự nhiên n thì tích (n+3) (n+6) chia hết cho 2.
1.
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
2.
abcdeg = abc.1000+deg = abc.994 +abc.6 +deg
= abc.994 + abc.6 - 6deg +7deg =abc.994 + 6.(abc - deg) +7deg
Vì abc.994=abc.7.142 chia hết cho 7
abc - deg chia hết cho 7 =>6.(abc - deg ) chia hết cho 7
7.deg chia hết cho 7
Từ 3 ý trên =>abc.994 +6.(abc - deg) + 7deg chia cho 7
vậy abcdeg chia hết cho 7
abcd \(⋮\) 101
<=> abcd = 101k (k > 10 ; k \(\in\)N)
<=> ab = cd
=> ab - cd = 0 điều ngược lại là ab - cd = 0 thì abcd \(⋮\)101 cũng đúng (đpcm)
* Chú thích (ko ghi vào)
\(⋮\) là dấu chia hết
đcpm là điều phải chứng minh
khi chia lần lượt cho 8,12,15 thì là BCNN(8; 12; 15) nếu số dư lần lượt là 6; 10;13 thì cộng lần lượt với các số đã ra. còn số chia hết cho 23 thì là Ư(23) tìm kết quả bằng cách chọn những con số BCNN đã tìm ra.
a-2:3 => a-2+3:3 =>a+1:3
a-4:4 => a-4+5:5 => a+1:5
a-6:7 => a-6+7:7 => a+1:7
Vậy a+1 là bọi của 3,5,7
a nhỏ nhất nên a+1 nhỏ nhất
a+1 là BCNN(3;5;7)=105
a=104
2) sooschia hết cho 4 phải có 2cs tận cùng chia hết cho 4
Ta có cd chia hết cho 4 nên abcd chia hết cho 4
Câu b tương tự