Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
7(x - 3) - x(3 - x)
= (x - 3)(7 + x)
chỉ bt có v mà k bt có đúng k
1 ) 7 ( x - 3 ) - x ( 3 - x )
= 7 ( x - 3 ) + x ( x - 3 )
= ( x - 3 ) ( 7 + x )
2 ) 4x2 - 6x + 3 - 2x
= 4x2 - 2x - 6x + 3
= 2x ( 2x - 1 ) - 3 ( 2x - 1 )
= ( 2x - 1 ) ( 2x - 3 )
3 ) ( 4 - x ) - 4x + x2
= ( 4 - x ) - x ( 4 - x )
= ( 4 - x ) ( 1 - x )
4 ) x2 - 2xy + y2
= ( x - y )2
4) (3x-2)(x-3)= 3x(x-3)-2(x-3)
=3x.x+3x.(-3)-2.x-2.(-3)
=\(3x^2\)-9x-4x+6
=\(3x^2\)+(-9x-4x)+6
=\(3x^2\)-13x+6
5) (2x+1)(x+3)=2x(x+3)+1(x+3)
=2x.x+2x.3+1.x+1.3
=\(2x^2\)+6x+1x+3
=\(2x^2\)+(6x+1x)+3
=\(2x^2\)+7x+3
6) (x-3)(3x-1)=x(3x-1)-3(3x-1)
=x.3x+x.(-1)-3.3x-3.(-1)
=\(3x^2\)-1x-9x+3
=\(3x^2\)+(-1x-9x)+3
=\(3x^2\)-10x+3
rút gọn biểu thức
A) \(x^2\)-(x+4)(x-1)=\(x^2\)- x(x-1)-4(x-1)
=\(x^2\)-x.x-x.(-1)-4.x-4.(-1)
=\(x^2\)-\(x^2\)+1x-4x+4
=(\(x^2-x^2\))+(1x-4x)+4
= -3x+4
B) x(x+2)-(x-2)(x+4)=x.x+x.2-x(x+4)+2(x+4)
=\(x^2+2x\)-x.x-x.4+2.x+2.4
=\(x^2+2x-x^2-4x+2x+8\)
=(\(x^2-x^2\))+(2x-4x+2x)+8
=8
tính giá trị biểu thức
A=3(x-2)-(2+x)(x-3)
=3.x+3.(-2)-2(x-3)-x(x-3)
=3x-6-2.x-2.(-3)-x.x-x(-3)
=3x-6-2x+6-\(x^2\)+3x
=(3x-2x+3x)+(-6+6)\(-x^2\)
=4x - \(x^2\)
thay x=-8 vào biểu thức thu gọn ta được:
4.(-8)- (-8)\(^2\)
= - 32 +64
= 32
B= x(3-x)-(1+x)(1-x)
=x.3+x.(-x)-1(1-x)-x(1-x)
=3x -\(x^2\)-1.1-1 .(-x)-x.1-x.(-x)
=3x\(-x^2\)-\(1^2\)+1x-1x+\(x^2\)
=(3x+1x-1x)+(\(-x^2+x^2\))-1
=3x-1
thay x=-5 vào biểu thức thu gọn ta được:
3.(-5)-1
=-15-1
=-16
Thu gọn biểu thức
4) (3x - 2) (x - 3)
= ( 3x2 - 2x ) - ( 3x x 3 - 2 x 3 )
= 3x2 - 2x - 3x x 3 + 2 x 3
= 3x2 - 2x - 9x + 6
= 3x2 - 11x + 6
5) (2x + 1) (x + 3)
= ( 2x2 + 1x ) + ( 6x + 3 )
= 2x2 + 1x + 6x + 3
= 2x2 + 7x + 3
6) (x - 3) (3x - 1)
= ( 3x2 - 9x ) - ( x - 3 )
= 3x2 - 9x - x + 3
= 3x2 - 10 + 3
Rút gọn biểu thức
A) x^2 - (x + 4) (x - 1)
= x2 - ( x2 + 4x ) - ( x + 4 )
= x2 - x2 - 4x - x - 4
= -5x - 4
B) x (x + 2) - (x - 2) (x + 4)
= x2 + 2x - ( x2 - 2x ) + ( 4x - 8 )
= x2 + 2x - x2 + 2x + 4x - 8
= 8x - 8
Tính giá trị biểu thức
A = 3 (x - 2) - (2 + x) (x - 3) tại x = - 8
Thế x = -8 vào, ta có :
= 3 ( -8 -2 ) - ( 2 + -8 ) ( -8 - 3 )
= 3 x ( -10 ) - ( - 6 ) ( -11 )
= -30 - 66
= -96
B = x (3 - x) - (1 + x) ( 1 - x) tại x = - 5
Thế x = - 5 vào, ta có :
= -5 ( 3 - -5 ) - ( 1+ -5 ) ( 1 - -5 )
= -5 x 8 - (-4) x 6
= - 40 - -24
= -40 + 24
= -16
100% đúng
hok tốt nha
1a) Ta có: -2x2 + 4x - 18 = -2(x2 - 2x + 1) - 16 = -2(x - 1)2 - 16
Ta luôn có: (x - 1)2 \(\ge\)0 \(\forall\)x --> -2(x - 1)2 \(\le\)0 \(\forall\)x
=> -2(x - 1)2 - 16 \(\le\)-16 \(\forall\)x
Dấu "=" xảy ra khi: x - 1 = 0 <=> x = 1
Vậy Max của -2x2 + 4x - 18 = -16 tại x = 1
b) Ta có: -2x2 -12x + 12 = -2(x2 + 6x + 9) + 30 = -2(x + 3)2 + 30
Ta luôn có: -2(x + 3)2 \(\le\)0 \(\forall\)x
=> -2(x + 3)2 + 30 \(\le\)30 \(\forall\)x
Dấu "=" xảy ra khi: x + 3 = 0 <=> x = -3
Vậy Max của -2x2 - 12x + 12 = 30 tại x = -3
3.
a)\(x^2+15x-25=x^2+15x+56,25-81,25\)
\(=\left(x+7,5\right)^2-81,25\ge-81,25\forall x\)
Dấu "=" xảy ra<=>\(\left(x+7,5\right)^2=0\Leftrightarrow x=-7,5\)
Vậy.....
b) \(3x^2-6x-21=3\left(x^2-2x-7\right)\)
\(=3\left[\left(x-1\right)^2-8\right]=3\left(x-1\right)^2-24\ge-24\forall x\)
Dấu "=" xảy ra<=>\(3\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy.....
c)\(x^2-6x+y^2+2y+36=x^2-6x+9+y^2+2y+1+26\)
\(=\left(x-3\right)^2+\left(y+1\right)^2+26\ge26\forall x;y\)
Dấu '=" xảy ra<=> \(\left(x-3\right)^2=0\Leftrightarrow x=3\) và \(\left(y+1\right)^2=0\Leftrightarrow y=-1\)
Vậy......
a)xy(x2+2y)=xy.x2+xy.2y
=x3y+2xy2
b)-4(6x2-xy)=-4.6x2+4.xy
=-24x2+4xy
c)4x[x2+6x-1/2]
=4x.x2+4x.6x-4x.1/2
=4x3+24x2-2x
Ta có : P = 4x(x - 1) + 11
= 4x2 - 4x + 11
= (2x)2 - 4x + 1 + 10
= (2x - 1)2 + 10
Mà (2x - 1)2 \(\ge0\forall x\)
Nên (2x - 1)2 + 10 \(\ge10\forall x\)
Vậy GTNN của biểu thức là 10 khi và chỉ khi x = \(\frac{1}{2}\)
\(A=-\frac{1}{2}\left(4x^2+y^2+4+4xy-8x-4y\right)-\frac{3}{2}y^2-4\)
\(A=-\frac{1}{2}\left(2x+y-2\right)^2-\frac{3}{2}y^2-4\le-4\)
\(\Rightarrow A_{max}=-4\) khi \(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(A_{min}\) không tồn tại
A=x2+2xy+2y2-2x-4y+2
=x2+xy-x+y2+xy-y-x-y+1+y2-2y+1
=(x2+xy-x)+(y2+xy-y)-(x+y-1)+(y2-2y+1)
= x(x+y-1)+y(y+x-1)-(x+y-1)+(y-1)2
=(x+y-1)(x+y-1)+(y-1)2
A=(x+y-1)2+(y-1)2
do (x+y-1)2\(\ge0\forall x;y\)
(y-1)2\(\ge0\forall y\)
=>(x+y-1)2+(y-1)2\(\ge0\)
=>Min A=0 khi
x+y-1=0
=>x+y=1 (*)
y-1=0
=>y=1
thay y=1 vào (*) ta đc
x+1=1
=>x=0
vậy....
3) \(B=3x^2+x+7\)
\(\Leftrightarrow B=3x^2+x+\dfrac{1}{12}+\dfrac{83}{12}\)
\(\Leftrightarrow B=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{83}{12}\)
\(\Leftrightarrow B=3\left[x^2+2.x.\dfrac{1}{6}+\left(\dfrac{1}{6}\right)^2\right]+\dfrac{83}{12}\)
\(\Leftrightarrow B=3\left(x+\dfrac{1}{6}\right)^2+\dfrac{83}{12}\)
Vậy GTNN của \(B=\dfrac{83}{12}\) khi \(x+\dfrac{1}{6}=0\Leftrightarrow x=\dfrac{-1}{6}\)