K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 2 2019

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)

\(\Rightarrow\left(x-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

\(\Rightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2=\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow x=y=1=-1\)

2 tháng 2 2019

Forever Miss You : có cách này nhanh hơn =))

Áp dụng BĐT AM-GM ta có: 

\(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}\ge2.\sqrt{\frac{x^2.1}{x^2}}+2.\sqrt{\frac{y^2.1}{y^2}}=2+2=4\)

Mà \(x^2+\frac{1}{x^2}+y^2+\frac{1}{y^2}=4\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{x^2}\\y^2=\frac{1}{y^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=1\\y^4=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)

Vậy \(\hept{\begin{cases}x=\pm1\\y=\pm1\end{cases}}\)

10 tháng 5 2020
https://i.imgur.com/WCGo7EZ.jpg
13 tháng 7 2019

câu a) sáng giải

b) \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{4^2}{2}=8>4\) vô nghiệm 

14 tháng 7 2019

a) ĐK: \(x,y\ne-1\)

\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\left(1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\left(2\right)\end{cases}}\)

(1) \(\Leftrightarrow\)\(\frac{x^2+x}{\left(x+1\right)\left(y+1\right)}+\frac{y^2+y}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x}{y+1}+\frac{y}{x+1}=1\) (3) 

(2) \(\Leftrightarrow\)\(\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(2xy=\left(x+1\right)\left(y+1\right)\)

Lại có: \(\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2\ge2\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)^2}=2\sqrt{\frac{1}{4}}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{x}{y+1}=\frac{y}{x+1}\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{2x}{y+1}=1\\2\left(\frac{x}{y+1}\right)^2=1\end{cases}\Leftrightarrow\left(\frac{x}{y+1}\right)^2-\frac{x}{y+1}=0\Leftrightarrow\frac{x}{y+1}\left(\frac{x}{y+1}-1\right)=0}\)

\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x}{y+1}=0\\\frac{x}{y+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=y+1\end{cases}\Leftrightarrow}x=y+1}\)

Thay x=y+1 vào (3) ta được: \(\frac{y}{x+1}=0\)\(\Leftrightarrow\)\(y=0\)\(\Rightarrow\)\(x=1\) ( tương tự với y ta cũng được x=0;y=1 ) 

tập nghiệm của pt \(\left(x,y\right)=\left\{\left(0;1\right),\left(1;0\right)\right\}\)

b) ĐK: \(x,y\ne0\) còn cách khác là dùng cosi nhé, VD: \(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\left(1\right)\\\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)

lấy (1) + (2) và cộng 2 vào 2 vế của pt mới ta được: 

\(10=a^2+1+b^2+1+\left(a+b\right)\ge2\sqrt{a^2}+2\sqrt{a^2}+4=12\)

\(\Rightarrow\)\(10\ge12\) (vô lí) => hpt vô nghiệm 

18 tháng 2 2018

6) Ta có

\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)

\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

20 tháng 6 2020

ĐK: \(x\ne\pm2\)

\(pt\Rightarrow x+2+x^2-4x=0\Leftrightarrow x^2-3x+2=0\Leftrightarrow x^2-x-2x+2=0\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(L\right)\\x=1\left(N\right)\end{matrix}\right.\)

Vậy \(S=\left\{1\right\}\)

22 tháng 6 2020

phần đầu khử mẫu sao bạn?

25 tháng 4 2020

y 1y25y+2=12y24+1

ĐKXĐ: \(x\ne2;x\ne-2\)

\(\Leftrightarrow\frac{y-1}{y-2}-\frac{5}{y+2}-\frac{12}{\left(y-2\right)\left(y+2\right)}-1=0\)

\(\Leftrightarrow\frac{\left(y-1\right)\left(y+2\right)-5\left(y-2\right)-12-\left(y-2\right)\left(y+2\right)}{\left(y-2\right)\left(y+2\right)}=0\)

\(\Leftrightarrow y^2+2y-y-2-5y+10-12-y^2-2y+2y+4=0\)

\(\Leftrightarrow-4y=0\)

\(\Leftrightarrow y=0\left(TM\right)\)

Vậy S = {0}

25 tháng 3 2019

Ta có:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{2xy}=\frac{1}{2}\)

\(\Rightarrow\frac{2x+2y+1}{2xy}=\frac{1}{2}\)

\(\Rightarrow2\left(2x+2y+1\right)=2xy\)(tích thung tỉ bằng tích ngoại tỉ)

\(\Rightarrow2x+2y+1=2xy\)

\(\Rightarrow2xy-2x-2y=1\)

\(\Rightarrow2x\left(y-1\right)-2\left(y-1\right)=3\)

\(\Rightarrow\left(y-1\right)\left(2x-2\right)=3=1\cdot3=3\cdot1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)

Bạn tự lập bảng nhé!