Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra , ta có :
\(\left(2x-3y^2\right)^3\)
\(=\left(2x\right)^3-3.\left(2x\right)^2.3y^2+3.2x.\left(3y^2\right)^2-\left(3y^2\right)^3\)
\(=8x^3-36x^2y^2+54xy^4-27y^6\)
Vậy hệ số \(x^2y^2\) trong khai triển của biểu thức là : \(-36\)
Áp dụng định lý Nhị thức Newton
3Ck.(2x^2)^(3-k).(3y)^k
= 3Ck.(2)^(3-k).(x)^(6-2k).3^k.y^k
Để được x^2y^2 thì 6 - 2k = 2 và k = 2
<=> k = 2 và k = 2 ( chọn )
Thì hệ số sẽ là 3C2.2^(3-2).3^2 = 3C2.2.3^2 = 54
\(\left(2x-3y^2\right)^3=8x^3-36x^2y^2+54xy^4-27y^6\)
hệ số của \(x^2y^2\)là -36
khai triển :
\(\left(2x^2+3y\right)^3=\left(2x^2\right)^3+3.\left(2x^2\right)^2.3y+3.2x^2.\left(3y\right)^2+\left(3y\right)^3\)
\(=8x^6+3.4x^4.3y+3.2x^2.9y+27y^3=8x^6+36x^4y+54x^2y+27y^3\)
Vậy hệ số của x4y trong khai triển.... là 36
Tìm cặp số x,y thỏa mãn đẳng thức sau:
a) 3( 2x - 1 )2 + 7( 3y + 5 )2= 0
b) x2 + y2 - 2x +10y + 26 = 0
\(x^2-y=y^2-x\)
\(\Rightarrow x^2-y^2+x-y=0\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y+1\right)=0\)
Vì \(x\ne y\Rightarrow x-y\ne0\Rightarrow x+y+1=0\)
\(\Rightarrow x+y=-1\)và \(x+y-3=-4\)\(\left(1\right)\)
\(M=x^2+2xy-3x-3y+y^2\)
\(=\left(x+y\right)^2-3\left(x+y\right)\)
\(=\left(x+y\right)\left(x+y-3\right)\)
TThay (1) vào M , ta có :
\(M=\left(-1\right).\left(-4\right)=4\)
1. 2xy = 2.x.3y = 6xy => m =6
2. (2x+3y)3 = 8x3 +3.4.x2.3y + ....
hệ số = 3.4.3 = 36
1) m = -6
2) 12