Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số \(\overline{ab}\) biết \(\left(\overline{ab}\right)^2-\left(\overline{ba}\right)^2\) là 1 SCP
Ta có \(A=\left(\overline{ab}\right)^2-\left(\overline{ba}\right)^2=\left(10a+b\right)^2-\left(10b+a\right)^2\)
\(A=\left(10a+b-10b-a\right)\left(10a+b+10b+a\right)=\left(9a-9b\right)\left(11a+11b\right)\)
\(A=9.11.\left(a-b\right)\left(a+b\right)\)
Do A là SCP và 9 là SCP \(\Rightarrow11\left(a-b\right)\left(a+b\right)\) là SCP
\(\Rightarrow\left(a-b\right)\left(a+b\right)=11k\) với k là SCP \(\Rightarrow\left(a-b\right)\left(a+b\right)\) là ước của 11
Lỡ tay bấm nút gửi, làm tiếp xuống vậy :D
Do \(\left\{{}\begin{matrix}0\le a-b\le9\\1\le a+b\le18\end{matrix}\right.\) và 11 là số nguyên tố
\(\Rightarrow a+b=11\) và \(a-b\) là SCP
Ta có các cặp số sau:
\(\left\{{}\begin{matrix}a+b=11\\a-b=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=6\\b=5\end{matrix}\right.\)
\(\left\{{}\begin{matrix}a+b=11\\a-b=4\end{matrix}\right.\) \(\Rightarrow\) không có a, b tự nhiên thỏa mãn
\(\left\{{}\begin{matrix}a+b=11\\a-b=9\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=10>9\\b=1\end{matrix}\right.\) (loại)
Vậy số cần tìm là 65
d) Để \(\dfrac{x^2-59}{x+8}\) nguyên \(\Leftrightarrow x^2-59⋮x+8\)
\(\Rightarrow\left(x^2-64\right)+5⋮x+8\)
\(\Rightarrow\left(x^2-8^2\right)+5⋮x+8\)
\(\Rightarrow\left(x-8\right)\left(x+8\right)+5⋮x+8\)
\(\Rightarrow5⋮x+8\)
\(\Rightarrow x+8\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow x\in\left\{-9;-7;-13;-3\right\}\)
Vậy \(x\in\left\{-9;-7;-13;-3\right\}\) thì \(\dfrac{x^2-59}{x+8}\in Z\)
nhìn thì thấy mình chỉ làm đc 2 bài thôi
bài 4
nhập vào máy
\(\sum\limits^{50}_{x=1}\left(\dfrac{2x-1}{2x\left(2x+1\right)}-\dfrac{2x}{\left(2x+1\right)\left(2x+2\right)}\right)\)
ấn = ta có kết quả
kết quả S=0.07461166509
bài 5
theo giả thiết ta lập đc hpt
P(x) : x-16 dư 29938 \(\Rightarrow P\left(16\right)=4096a+256b+16c-2007=29938\Leftrightarrow4096a+256b+16c=31945\left(1\right)\)
P(x) : \(x^2-10x+21\) dư \(R\left(x\right)=\dfrac{10873}{16}x-3750\)
\(\Rightarrow P\left(7\right)=343a+49b+7c-2007=R\left(7\right)=\dfrac{16111}{16}\Rightarrow343a+49b+7c=\dfrac{48223}{16}\left(2\right)\)
\(\Rightarrow P\left(3\right)=27a+9b+3c-2007=R\left(3\right)=-\dfrac{27381}{16}\Rightarrow27a+9b+3c=\dfrac{4731}{16}\left(3\right)\)
kết hợp (1),(2),(3) ta có hpt giải hpt ta đc a,b,c
kq:a=7; b=13; c=-55/16
mấy câu còn lại ngoài khả năng của mình rồi hihi
1b.
Cach 1
Ta co:
\(M=\frac{x^2-2x+2015}{x^2}\)
\(\Leftrightarrow\left(M-1\right)x^2+2x-2015=0\)
Xet \(M=1\)suy ra:\(x=\frac{2015}{2}\)
Xet \(M\ne1\)
\(\Leftrightarrow\Delta^`\ge0\)
\(1+\left(M-1\right).2015\ge0\)
\(\Leftrightarrow2015M-2014\ge0\)
\(\Leftrightarrow M\ge\frac{2014}{2015}\)
Dau '=' xay ra khi \(x=-\frac{1}{M-1}\Leftrightarrow x=2015\)
Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)
Cach 2
\(M=\frac{x^2-2x+2015}{x^2}=\frac{2014x^2+\left(x-2015\right)^2}{2015x^2}=\frac{2014}{2015}+\frac{\left(x-2015\right)^2}{2015x^2}\ge\frac{2014}{2015}\)
Dau '=' xay ra khi \(x=2015\)
Vay \(M_{min}=\frac{2014}{2015}\)khi \(x=2015\)
Bài 2 :
a) \(10\le\overline{a_7a_8}\le31\) để \(100\le\left(\overline{a_7a_8}\right)^2\le999\) là số có ba chữ số.
Với mỗi số trong khoảng \(\left\{10;11;12;...;31\right\}\) ta lại có một số \(\overline{a_1a_2a_3}\) khác nhau; còn a4; a5; a6 tùy ý.
b) Trước hết : \(23\le\overline{a_7a_8}\le46\)
Trước hết để a7a8 khi lập phương lên sẽ vẫn có chữ số tận cùng ban đầu thì \(a_8\in\left\{0;1;4;5;6;9\right\}\)
Giả sử a8 = 0 thì số a4a5a6a7a8 chia hết cho 103 = 1000; hay a7 phải bằng 0; loại.
Nếu a8 = 1 thì xét \(23\le\overline{a_7a_8}\le46\) có số 31 không thỏa mãn.
Tương tự xét các trường hợp còn lại khi đã có giới hạn \(23\le\overline{a_7a_8}\le46\).
Bài 1 :
Không đủ dữ kiện.
Ngộ nhỡ m = n = 2 thì điều phải chứng minh là sai.