\(\frac{n-5}{3n-14}\)là phân số tối giản
2, Tìm phân số có giá trị...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2020

Mik học lớp 6 nhưng lại quên mất câu trả lời rồi!

sorry bạn nha!

4 tháng 5 2020

1. Gọi d là ƯC(n - 5 ; 3n - 14)

\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}\)

=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d

=> 3n - 15 - 3n + 14 chia hết cho d

=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d

=> 0 + ( -1 ) chia hết cho d

=> -1 chia hết cho d

=> d = 1 hoặc d = -1

=> ƯCLN(n - 5 ; 3n - 14) = 1

=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )

2. Gọi phân số cần tìm là \(\frac{a}{b}\)

Theo đề bài ta có : \(\frac{a}{b}=\frac{5}{6}\)và \(a+b=88\)

=> \(\frac{a}{5}=\frac{b}{6}\)và \(a+b=88\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{a}{5}=\frac{b}{6}=\frac{a+b}{5+6}=\frac{88}{11}=8\)

\(\frac{a}{5}=8\Rightarrow a=40\)

\(\frac{b}{6}=8\Rightarrow b=48\)

=> \(\frac{a}{b}=\frac{40}{48}\)

Vậy phân số cần tìm là \(\frac{40}{48}\)

3. \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)

Để \(\frac{n+2}{n-1}\)có giá trị nguyên => \(\frac{3}{n-1}\)có giá trị nguyên

=> \(3⋮n-1\)

=> \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

=> \(n\in\left\{2;0;4;-2\right\}\)

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

25 tháng 6 2015

2. Gọi d là ước chung của ( n+1) và ( n+2 )

Ta cso: ( n+1 )  chia hết cho d và ( n+2 ) chia hết cho d => ( n+2 ) - ( n+1 ) chia hết cho d hay 1 chia hết cho d

=> d=-1 và 1 => tử và mẫu của phân số \(\frac{n+1}{n+2}\) chỉ cso ước chung là 1 và -1 => phân số \(\frac{n+1}{n+2}\) là phân sô tối giản

Nếu thấy 2 bài mình làm đúng thì baasm đúng cho mình nhak

16 tháng 3 2018

Giải từng bài 

Bài 1 : 

Ta có : 

\(\frac{23+n}{40+n}=\frac{3}{4}\)

\(\Leftrightarrow\)\(4\left(23+n\right)=3\left(40+n\right)\)

\(\Leftrightarrow\)\(92+4n=120+3n\)

\(\Leftrightarrow\)\(4n-3n=120-92\)

\(\Leftrightarrow\)\(n=28\)

Vậy số cần tìm là \(n=28\)

Chúc bạn học tốt ~ 

16 tháng 3 2018

Bài 2 : 

\(a)\) Gọi \(ƯCLN\left(12n+1;30n+2\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(12n+1\right)⋮d\\2\left(30n+2\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(60n+5\right)-\left(60n+4\right)⋮d\)

\(\Rightarrow\)\(1⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(12n+1;30n+2\right)=\left\{1;-1\right\}\)

Vậy \(A=\frac{12n+1}{30n+2}\) là phân số tối giản với mọi giá trị nguyên n 

Chúc bạn học tốt ~ 

kết bạn mình nha

4 tháng 7 2015

\(\frac{2n^2+1}{3}\in Z\Rightarrow2n^2+1\text{ chia hết cho }3\Rightarrow2n^2\text{ chia 3 dư 2}\)

\(\Rightarrow n^2\text{ chia 3 dư 1}\Rightarrow n\text{ chia 3 dư 1}\)

\(\Rightarrow n\text{ không chia hết cho 3 }\Rightarrow\frac{n}{3}\text{ tối giản}\)

\(n\text{ chia 3 dư 1 }\Rightarrow2n\text{ chia 3 dư 2}\Rightarrow2n+3\text{ chia 3 dư 2}\)

\(\Rightarrow2n+3\text{ không chia hết cho 3}\Rightarrow2n+3\text{ không chia hết cho 6}\)

\(\Rightarrow\frac{2n+3}{6}\text{ tối giản}\)

28 tháng 2 2015

Helppppppp, bài nào cũng được ạ. Cảm ơn

13 tháng 2 2016

Câu 1:

1/120;3/40;5/24;8/15

chỉ z thôi bạn

 

13 tháng 3 2018

Ta có: theo bài ra \(\frac{2n+3}{4n+8}\)\(\frac{1}{4}\)<=> 4(2n+3) = 4n+8 <=> 8n+12 = 4n+8 <=> 8n-4n = 8-12 <=> 4n = -1 <=> n = -1

         gọi d là ước chung lớn nhất của 2n+3 và 4n+8.

suy ra ((4n+8) - (2n+3)) chia hết cho d

((4n+8) - (2n+3) + (2n+3)) chia hết cho d

(4n-8 - 2n-3 - 2n-3) chia hết cho d

2 chia hết cho d, suy ra d nhận giá trị 1;2. Mà d không thể bằng 2 (do 2n+3 lẻ với mọi số tự nhiên) nên d = 1. Vậy phân số đã cho tối giản.

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìmgiá trị lớn nhất đó.Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn...
Đọc tiếp

Bài tập 3. Với giá trị nào của số tự nhiên a thì     \(\frac{5\cdot a-17}{4\cdot a-23}\)có giá trị lớn nhất.

Bài tập 4. Tìm số tự nhiên n để phân số B = \(\frac{10\cdot n-3}{4\cdot n-10}\) đạt giá trị lớn nhất. Tìm

giá trị lớn nhất đó.
Bài tập 5. Tìm số tự nhiên n để phân số \(\frac{7\cdot n-8}{2\cdot n-3}\) có giá trị lớn nhất.
Bài tập 6. Tìm x để phân số \(\frac{1}{x^2+1}\) có giá trị lớn nhất.
Bài tập 7. Tìm giá trị nhỏ nhất của của biểu thức sau: A= \(\frac{6\cdot n-1}{3\cdot n-2}\) (với n là số nguyên )

Bài tập 8: cho phân số A= \(\frac{n+1}{n-3}\) . Tìm n để có giá trị lớn nhất.
Bài tập 9: ho phân số: p= \(\frac{6\cdot n+5}{3\cdot n+2}\) (n \(\in\)  N Với giá trị nào của n thì phân số p
có giá trị lớn nhất? tìm giá trị lớn nhất đó.

0