Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)xét tam giác ABC có AD=DB, AE=EC => DE là đg` TB => DE//BC=> DE//BF
và DE=1/2BC=> DE= BF => BDEF là hbh
b) DE//BC => DE//KF => DEFK là hình thang(1)
DE//BC => DEF = EFC(SLT)
BDEF là hbh BD//EF => DBC=EFC (đồng vị) => DEF = DBC
DE//BC => EDK=DKB(SLT)
Xét tam giác ABK vg tại K có D là TĐ của AB=> KD là trung tuyến => KD=1/2AB=BD=> tam giác BDK cân tại D => DBC=DKB
=> KDE = DEF(2)
Từ (1) và (2) => DEFK là hình thang cân
Xét tam giác ABC có EA=EB ;MB=MC
suy ra ME là đường trung bình cũa tam giác ABC
suy ra ME // AC hay gócAEM=900 (1)
Tương tự góc MFA=900 (2)
góc EAF=900 (3)
từ (1) ;(2) ;(3) suy ra AEMF là hình chữ nhật
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó:ADME là hình chữ nhật
Suy ra: DE=AM
b: Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
M là trung điểm của bC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
E là trung điểm của AC
M là trung điểm của BC
DO đó: EM là đường trung bình
=>EM//AB và EM=AB/2
=>EM//BD và EM=BD
hay BDEM là hình bình hành
c: Ta có: BDEM là hình bình hành
mà O là giao điểm của hai đường chéo
nên O là trung điểm chung của BE và DM
Xét ΔEBC có
O là trung điểm của EB
I là trung điểm của CE
Do đó: OI là đường trung bình
=>OI=BC/2
mà AM=BC/2
nên OI=AM
Xét tứ giác AOMI có MO//AI
nên AOMI là hình thang
mà OI=AM
nên AOMI là hình thang cân
Do MD\(\perp\)AB tại D =)\(\widehat{A\text{D}M}\)=900
Do ME\(\perp\)AC tại E =)\(\widehat{A\text{E}M}\)=900
Do tam giác ABC vuông tại A =) \(\widehat{BAC}\)=900
Xét tứ giác ADME có:
\(\widehat{A\text{D}M}\)=\(\widehat{A\text{E}M}\)=\(\widehat{BAC}\) ( vì cùng bằng 900)
=) ADME là hình chữ nhật
Xét tam giác ABC có :
M là trung điểm của BC
MD // AC
=) D là trung điểm của AB
Xét tam giác ABC có :
M là trung điểm của BC
ME // AB
=) E là trung điểm của AC
Xét tam giác ABC có :
D là trung điểm của AB
E là trung điểm của AC
=) DE là đường trung bình của tam giác ABC
=) DE //BC =) DE //BM (1)
Và DE= \(\frac{BC}{2}\)=BM=CM (vì M là trung điểm của BC ) (2)
Từ (1) và (2) =) BDEM là hình bình hành
Bài 1 :
B A C H K E D M N
a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)
Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)
=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)
Từ (1) và (2) suy ra MNKH là hình thang cân.
b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3)
Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD
=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)
=> BE = CD (4)
Từ (3) và (4) suy ra BCDE là hình thang cân.
A B C D E N M P
Bài 2 :
a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)
Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\); \(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)
\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)
b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC
=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P
Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.
1/
a/ Ta có : GA = GB ; HA = HC
=> GH là đường trung bình của tam giác ABC
b/ Vì GH là đường trung bình nên GH // BC
=> GHCB là hình thang
c/ Ta có : \(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)
\(\Rightarrow GH=\frac{1}{2}BC=\frac{5}{2}\)
d/ Hình thang nào cân?