Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
Ta cần chứng minh rằng: p = (a − b) (a − c)(a − d) (b − c) (b − d) (c − d) chia hết cho 12.
Nhận xét rằng khi chia một số cho 3 thì số dư là một trong ba số 0, 1, 2. Xét tính chia hết của p với 3 và 4, riêng rẽ. Theo nguyên lý Dirichlet, tồn tại ít nhất hai số nguyên trong bốn số a, b, c, d cho cùng số dư khi chia cho 3.
Hiệu của những hai số này chia hết cho 3. Do đó, p chia hết cho 3. Nếu tồn tại hai trong bốn số nguyên a,b,c,d cho cùng số dư khi chia cho 4, thì p chia hết cho 4, theo cách lập luận như trên.
Nếu không, các số dư của a, b, c, d khi chia cho 4 sẽ khác nhau. Nhưng khi đó, hai trong bốn số cùng tính chẵn lẻ, cặp còn lại cũng cùng tính chẵn lẻ, thì hiệu của chúng đều chẵn. Tích của hai số chẵn chia hết cho 4. Do đó, p chia hết cho 4. Vậy, p chia hết cho 12.
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
Làm piếng viết phân số nên bạn lm đỡ nhé!!!!!!!!!!!!!!
Các bạn đã giải theo 3 hướng sau đây :
Hướng 1 : Tính S = 1 201/280
Hướng 2 : Khi qui đồng mẫu số để tính S thì mẫu số chung là số chẵn. Với mẫu số
chung này thì 1/2 ; 1/3 ; 1/4 ; 1/5 ; 1/6 ; 1/7 sẽ trở thành các phân số mà tử số là số chẵn,
chỉ có 1/8 là trở thành phân số mà tử số là số lẻ. Vậy S là một phân số có tử số là số lẻ
và mẫu số là số chẵn nên S không phải là số tự nhiên.
Hướng 3 : Chứng minh 5/4 < S < 2
Thật vậy 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 > 6 x 1/8 = 3/4
nên S > 3/4 + 1/2 = 5/4
Mặt khác : 1/4 + 1/5 + 1/6 + 1/7 < 4 x 1/4 = 1
nên S < 1 + 1/2 + 1/3 + 1/8 = 1 + 1/2 + 11/24 <2
Vì 5/4 < S < 2 nên S không phải là số tự nhiên.
1 và 2 đều dùng chung một cách giải .
Tổng của các phân số có tử số là một luôn là một phân số bé hơn một .
Vậy chúng đều không phải số tự nhiên .
Nguyễn Ngọc Đạt F12 ns vậy cũng nói, tổng các số bé hơn 1 là bé hơn 1 ak ??? 0.5<1 ; 0.75 , 1 mà 0.5 + 0.75 >1 đó