K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

1. Có: \(8p-1;8p;8p+1\) là ba số nguyên liên tiếp.

Suy ra: Phải có một số chia hết cho 3.

Mà: \(8p-1\) là số nguyên tố (bài cho)

\(\Rightarrow8p-1⋮̸3\)

Có: p là số nguyên tố. \(\left(8;3\right)=1\)

\(\Rightarrow8p⋮̸3\)

Suy ra: \(8p+1⋮3\)

\(\Rightarrow8p+1\) là hợp số (ĐPCM)

10 tháng 7 2018

2. Có: \(p^2-1=p^2+p-p-1=\left(p^2+p\right)-\left(p+1\right)=p\left(p+1\right)-\left(p+1\right)=\left(p-1\right)\left(p+1\right)\)

+) p là số nguyên tố lớn hơn 3 ⇒ p là số lẻ. (1)

\(\Leftrightarrow p-1\)\(p+1\) là hai số chẵn liên tiếp.

\(\Leftrightarrow\left(p-1\right)\left(p+1\right)⋮8\) (*)

Từ (1) suy ra p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)

\(+)p=3k+1\Leftrightarrow\left(p-1\right)\left(p+1\right)=\left(3k+2\right)3k⋮3\)

\(+)p=3k+2\Leftrightarrow\left(p-1\right)\left(p+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)

\(\Rightarrow\left(p-1\right)\left(p+1\right)⋮3\) (**)

Từ (*) và (**) suy ra \(\left(p-1\right)\left(p+1\right)⋮\left(3;8\right)\Leftrightarrow\left(p-1\right)\left(p+1\right)⋮24\)

Vậy \(\left(p-1\right)\left(p+1\right)⋮24\) (ĐPCM)

12 tháng 10 2016

Xét ba số liên tiếp \(8p-1;8p;8p+1\), chắc chắn ta tìm được một số chia hết cho 3

+Giả sử nếu chọn 8p-1 là số nguyên tố thì \(8p-1>3\) và \(8p-1\)không chia hết cho 3

Do vậy tồn tại một trong hai số còn lại là 8p và 8p+1 chia hết cho 3 . Vậy thì tích \(8p\left(8p+1\right)\) cũng chia hết cho 3

Nhưng từ giả thiết , ta lại có p là số nguyên tố, do vậy 8p không thể chia hết cho 3. Vậy 8p+1 chia hết cho 3 => 8p+1 là hợp số

+Giả sử với trường hợp 8p+1 là số nguyên tố thì lập luận tương tự ta cũng suy ra 8p-1 là hợp số.

Vậy ........................................

26 tháng 10 2016

Vậy đáp án bằng bao nhiêu

11 tháng 11 2019

Bài này dễ thôi bạn !!!

Xét mọi p nguyên tố lẻ và p > 3=> p^2:3 dư 1 do 1 SCP : 3 dư 0 hoặc 1 và SCP đó không chia hết 3 do là SNT>3

=> 8p^2+1 chia hết cho 3 và > 3 do p > 3 => Là hợp số => Vô lí => Loại

Xét p=3 => 8p^2+2p+1=79 là SNT và 8p^2+1=73 là SNT lẻ (TMĐK)

=> ĐPCM.

21 tháng 5 2019

Đề bài: tìm tất cả các số nguyên tố p để 8p2+1 và 8p2-1 là số nguyên tố

Trả lời: Đây là dạng toán lớp 6 chứ

B1: Thử các snt p -> khi đạt gtri thỏa mãn

B2: Nếu p> số nt tìm đc ( lớn nhất ) Có dạng j

-> Cm vô lý.

16 tháng 11 2017

Đề kiểu gì vậy. 

Ta có: \(2p^2⋮p^2\)thì là hợp số luông chứ chứng minh cái gì nữa

16 tháng 11 2017
Đề sai bạn ơi!!!
16 tháng 6 2015

BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5 

Ta có P8n+3P4n-4 = p4n(p4n+3) -4 

Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1 

( cách chứng minh là đồng dư hay tìm chữ số tận cùng )

suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5

Bài 5

Ta xét :

Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)

Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)

suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)

Từ (1) và (2) suy ra 4p+1 là hợp số