K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Ta có: DE //AB (gt) hay DE //AF

Và DF //AC (gt) hay DF //AE

Suy ra, tứ giác AEDF là hình bình hành.

Lại có, I là trung điểm của AD nên I cũng là trung điểm EF (tính chất hình bình hành)

Vậy E và F đối xứng qua tâm I.

7 tháng 9 2021

Bài 1:

undefined

Tứ giác ABCD là hình bình hành: 

⇒ AB // CD hay BM // CD

Xét tứ giác BMCD ta có:

BM // CD

BM = CD( = AB ) (gt)

Suy ra: Tứ giác BMCD là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ MC // BD và MC = BD (1)

+) Ta có AD // BC (gt) haỵ DN // BC

Xét tứ giác BCND ta có: DN // BC và DN = BC (vì cùng bằng AD)

Suy ra: Tứ giác BCND là hình bình hành (vì có một cặp cạnh đối song song và bằng nhau)

⇒ CN // BD và CN = BD (2)

Từ (1) và (2) theo tiên đề Ơ- clit suy ra: M, C, N thẳng hàng và MC = CN( = BD).

Bài 2:

undefined

Ta có: DE //AB (gt) hay DE //AF

Và DF //AC (gt) hay DF //AE

Suy ra, tứ giác AEDF là hình bình hành.

Lại có, I là trung điểm của AD nên I cũng là trung điểm EF (tính chất hình bình hành)

Vậy E và F đối xứng qua tâm I.

16 tháng 10 2018

Ta có: EF // BD (gt)

BF // ED (gt)

Suy ra EF = BD; BF = DE (t/c đoạn chắn)

Trên AB lấy K sao cho AF = BK

ΔAFEΔAFE và ΔKBDΔKBD có:

AF = BK (cách vẽ)

AFE = KBD (đồng vị)

EF = BD (cmt)

Do đó, ΔAFE=ΔKBD(c.g.c)ΔAFE=ΔKBD(c.g.c)

=> AE = KD (2 cạnh t/ứ)

= BF = ED (theo gt AE = BF, theo cmt BF = ED)

Kẻ DM⊥AB;DN⊥ACDM⊥AB;DN⊥AC

ΔΔ DMK vuông tại M và ΔΔ DNE vuông tại N có:

DK = DE (cmt)

MKD = NED (cùng đồng vị với FAE)

Do đó, ΔDMK=ΔDNEΔDMK=ΔDNE (cạnh huyền - góc nhọn)

=> DM = DN (2 cạnh t/ứ)

=> D cách đều AB và AC (đpcm)

thông cảm nha mk llafm vội nên ko để ý nên ko chác chắn bài 

13 tháng 10 2016

  A B C I H K F E a) Theo gt ta có :

FD // AC => FD // AE ( E \(\in AC\))      ( 1)

DE // AB => DE // AF ( F \(\in AB\) )      (2)

từ (1)(2) \(\Rightarrow AEDF\) là hình bình hành ( theo dấu hiệu nhận biết hình bình 1)

b)

theo a) tao có AEDF là hình bình hành

hình bình hành có 2 đường chéo AD và EF giao nhau tại I

=> I là trung điểm của 2 đường chéo AD và EF ( t/c hình bình hành )

=> \(IF=IE\) hay F đối xứng với E qua I

 

13 tháng 10 2016

a)Xét tứ giác AEDF có: DE//AB, DF//AC

\(\Rightarrow\)AEDE là hình bình hành

b) Vì 2 đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường nên IA=ID, IF=IE suy ra E đối xứng với F qua I

a: Xét tứ giác AEDF có 

\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

Do đó: AEDF là hình chữ nhật

b: Xét ΔABC có 

D là trung điểm của BC

DE//AC

Do đó: E là trung điểm của AB

Xét tứ giác AIBD có 

E là trung điểm của AB

E là trung điểm của ID

Do đó: AIBD là hình bình hành

mà AB\(\perp\)DI

nên AIBD là hình thoi

a: Xét ΔAED vuông tại A và ΔDFC vuông tại D có

AD=DC

AE=DF

=>ΔAED=ΔDFC

=>FC=DE

b: Xét tứ giác DQPF có

I là trung điểm chung của DP và QF

DP vuông góc DF

=>DQPF là hình thoi

3 tháng 11 2015

A B C E F I

Vì AF=ED và AF//ED( do AB//ED) nên AFDE là  hình bình hành 
=> IF=IE ( I là giao điểm của hai đường chéo)
vậy F và E đối xứng với nhau qua I

vì AFDE là hình bình hành nên DF=AE
Vậy  DF=AE