Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng d có 1 vtcp là (1;-3) nên nhận (3;1) là 1 vtpt
Phương trình d:
\(3\left(x+2\right)+1\left(y-3\right)=0\Leftrightarrow3x+y+3=0\)
a/ Đường thẳng đã cho nhận \(\left(5;2\right)\) là 1 vtpt
Phương trình tổng quát:
\(5\left(x-1\right)+2\left(y-3\right)=0\Leftrightarrow5x+2y-11=0\)
b/ Đường thẳng đã cho nhận \(\left(3;2\right)\) là 1 vtcp
Phương trình tham số: \(\left\{{}\begin{matrix}x=2+3t\\y=-1+2t\end{matrix}\right.\)
c/ Đường thẳng đã cho có pt:
\(-2\left(x-2\right)+3\left(y+1\right)=0\Leftrightarrow-2x+3y+7=0\)
d/ \(\overrightarrow{AB}=\left(-3;3\right)=-3\left(1;-1\right)\Rightarrow\) đường thẳng nhận \(\left(1;1\right)\) là 1 vtpt
Phương trình:
\(1\left(x-2\right)+1\left(y-3\right)=0\Leftrightarrow x+y-5=0\)
e/ Đường thẳng song song d' nên nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình:
\(2\left(x-1\right)-1\left(y-4\right)=0\Leftrightarrow2x-y+2=0\)
tham khảo
Phương pháp giải
- Gọi tọa độ của PP dựa vào điều kiện P∈OyP∈Oy.
- Sử dụng điều kiện tam giác vuông tìm PP.
- Tính diện tích tam giác theo công thức diện tích tam giác vuông.
Một số bài toán viết phương trình đường thẳng