Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhỉn vào dễ thấy
mẫu chung là (4-x2)x
lấy BT chia cho mẫu ở trên (bằng máy)
ra 4x2-8x
đến đây dễ rồi
\(A=\frac{3}{2-x}+\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)
\(A=\frac{-3}{x-2}+\frac{3}{x+2}+\frac{3x^2}{\left(x+2\right)\left(x-2\right)}\)
\(A=\frac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{-3x-6+3x-6+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(A=\frac{-12+3x^2}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(-4+x^2\right)}{\left(x-2\right)\left(x+2\right)}=\frac{3\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(A=3\)
\(a,A=\frac{3}{2-x}-\frac{3}{x+2}+\frac{3x^2}{x^2-4}\)
\(=\frac{-3\left(x+2\right)-3\left(x-2\right)+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{-3x-6-3x+6+3x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x^2-6x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{3x}{x+2}\)
\(b,ĐKXĐ:\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne\pm2\\x\ne-1\end{cases}}}\)
Ta có : \(P=A:B=\frac{3x}{x+2}:\frac{x+1}{x+2}\)
\(=\frac{3x}{x+2}.\frac{x+2}{x+1}\)
\(=\frac{3x}{x+1}\)
\(=\frac{3x+3}{x+1}-\frac{3}{x+1}\)
\(=3-\frac{3}{x+1}\)
Để P nguyên thì \(3-\frac{3}{x+1}\inℤ\)
\(\Leftrightarrow\frac{3}{x+1}\inℤ\)
Vì \(x\inℤ\Rightarrow x+1\inℤ\)
Ta có bảng :
x + 1 | -3 | -1 | 1 | 3 |
x | -4 | -2 | 0 | 2 |
Vậy \(x\in\left\{-4;-2;0;2\right\}\)
dkxd \(\hept{\begin{cases}\\\end{cases}}x-2=0;x+2=0\Leftrightarrow\hept{\begin{cases}\\\end{cases}x=+2;x=-2}\)
b/ \(\frac{x^2}{x^2-4}-\frac{x}{x+2}-\frac{2}{x-2}=\frac{x^2}{\left(x-2\right).\left(x+2\right)}-\frac{x.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}-\frac{2.\left(x+2\right)}{\left(x-2\right).\left(x+2\right)}\)
\(\frac{x^2-x^2-2x-2x+4}{\left(x-2\right).\left(x+2\right)}=\frac{4}{\left(x-2\right)\left(x+2\right)}\)
tới khúc này bí rồi ^^
a,ĐKXĐ của A là:\(x\ne+2;-2\)
b,\(\frac{x^2-x^2+2x-2x+4}{\left(x-2\right)\left(x+2\right)}\)=\(\frac{4}{\left(x+2\right)\left(x-2\right)}\)
c,Để A\(\in\)Z=> (x+2)(x-2)\(\inƯ\)(4) hay \(x^2-4\inƯ\)(4)=\(\left(4;-4;2;-2;1;-1\right)\)
Ta có bảng
\(x^2-4\) | x |
4 | \(\sqrt{8}\) |
-4 | 0 |
2 | \(\sqrt{6}\) |
-2 | \(\sqrt{2}\) |
1 | \(\sqrt{5}\) |
Vậy A\(Z=>x\in\)( 0;\(\sqrt{8};\sqrt{6};\sqrt{2};\sqrt{5}\))
\(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2-40xy=50xy\)
\(\Leftrightarrow\) \(\left(5x+4y\right)^2=90xy\)
Mặt khác, ta cũng có: \(25x^2+16y^2=50xy\)
\(\Leftrightarrow\) \(\left(5x-4y\right)^2=10xy\)
Do đó:
\(P^2=\frac{\left(5x-4y\right)^2}{\left(5x+4y\right)^2}=\frac{10xy}{90xy}=\frac{1}{9}\)
Vậy, \(P'=\frac{1+\frac{1}{9}}{1-\frac{1}{9}}=1\frac{1}{4}\)
1)
\(25x^2-40xy+16y^2=10xy\Leftrightarrow\left(5x-4y\right)^2=10xy\)
\(25x^2+40xy+16y^2=10xy\Leftrightarrow\left(5x+4y\right)^2=90xy\)
\(P^2=\frac{1}{9}\Leftrightarrow Q=\frac{1+P^2}{1-P^2}=\frac{1+\frac{1}{81}}{1-\frac{1}{81}}=\frac{82}{80}=\frac{41}{40}\)
ĐK : \(x\ne-2\)
ta có \(A=\frac{x^2+2x+3}{\left(x+2\right)^2}=\frac{3x^2+6x+9}{3\left(x+2\right)^2}=\frac{2x^2+8x+8+x^2-2x+1}{3\left(x+2\right)^2}\)
\(=\frac{2\left(x+2\right)^2+\left(x-1\right)^2}{3\left(x+2\right)^2}=\frac{2}{3}+\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}\)
vì (x-1)^2 >=0=> \(\frac{\left(x-1\right)^2}{3\left(x+2\right)^2}>=0\)
=> \(A>=\frac{2}{3}\)
dấu = xảy ra <=> x=1 ( thỏa mãn ĐKXĐ)
A=(1/x-2 - (2x/(2-x)(2+x) - 1/2+x) ) *(2-x)/x
=(1/x-2 - x^2+5x-2/(2-x)(2+x))*2-x/x
=(-x^3-4x^2+12x/(x-2)(2-x)(2+x))*2-x/x
= - x(x-2)(x+6)(2-x)/x(x-2)(2-x)(2+x)
= - x+6/x+2