Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từng ý nhé !!!
\(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{1}{abc}\left(a^3+b^3+c^3\right)\)
\(\frac{1}{abc}.3abc=3\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Xét \(a+b+c=0\) ta có :\(\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)
\(Q=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b+c\right)\left(b-c\right)-a^2}+\frac{c^2}{\left(c+a\right)\left(c-a\right)-b^2}\)
\(=\frac{a^2}{-ac+bc-c^2}+\frac{b^2}{-ab+ac-a^2}+\frac{c^2}{-bc+ab-b^2}\)
\(=\frac{a^2}{-c\left(a+c\right)+bc}+\frac{b^2}{-a\left(a+b\right)+ac}+\frac{c^2}{-b\left(c+b\right)+ab}\)
\(=\frac{a^2}{bc+bc}+\frac{b^2}{ac+ac}+\frac{c^2}{ab+ab}\)
\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}=\frac{1}{2abc}\left(a^3+b^3+c^3\right)=\frac{1}{2abc}.3abc=\frac{3}{2}\)
Xét \(a=b=c\) ta có :
\(Q=\frac{a^2}{a^2-a^2-a^2}+\frac{b^2}{b^2-b^2-b^2}+\frac{c^2}{c^2-c^2-c^2}=-1-1-1=-3\)
Hằng đẳng thức:\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Khi đó:
\(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
\(=2011\)
Sử dụng kết hợp hai bất đẳng thức Cauchy-Schwarz và AM - GM, ta được: \(\left(ab+1\right)^2\le\left(a^2+1\right)\left(b^2+1\right)=\left(a.a.1+1\right)\left(b.b.1+1\right)\)\(\le\left(\frac{a^3+a^3+1}{3}+1\right)\left(\frac{b^3+b^3+1}{3}+1\right)=\frac{4}{9}\left(a^3+2\right)\left(b^3+2\right)\)\(\Rightarrow ab+1\le\frac{2}{3}\sqrt{\left(a^3+2\right)\left(b^3+2\right)}\Rightarrow\frac{a^3+2}{ab+1}\ge\frac{3}{2}\sqrt{\frac{a^3+2}{b^3+2}}\)(1)
Hoàn toàn tương tự: \(\frac{b^3+2}{bc+1}\ge\frac{3}{2}\sqrt{\frac{b^3+2}{c^3+2}}\)(2); \(\frac{c^3+2}{ca+1}\ge\frac{3}{2}\sqrt{\frac{c^3+2}{a^3+2}}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được:
\(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\ge\)\(\frac{3}{2}\left(\sqrt{\frac{a^3+2}{b^3+2}}+\sqrt{\frac{b^3+2}{c^3+2}}+\sqrt{\frac{c^3+2}{a^3+2}}\right)\)
\(\ge\frac{3}{2}.\sqrt[3]{\sqrt{\frac{a^3+2}{b^3+2}}.\sqrt{\frac{b^3+2}{c^3+2}}.\sqrt{\frac{c^3+2}{a^3+2}}}=\frac{3}{2}\)(Áp dụng BĐT AM - GM)
Đẳng thức xảy ra khi a = b = c = 1