K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

\(a^3+b^3+c^3\)

\(=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)+\left(a+b+c\right)\)

Ta có\(a^3-a=\left(a-1\right)a\left(a+1\right)\)chia hết cho 6 bạn tự CM

Tương tự \(b^3-b\)\(c^3-c\)

Mà \(a+b+c⋮6\)

Twg các điều trên suy ra \(a^3+b^3+c^3⋮6\)

5 tháng 11 2017

ban kia lam dung roi do

k tui nha

thanks

5 tháng 8 2018

1) \(n^3+11n=n^3-n+12n=n\left(n^2-1\right)+12n=\left(n-1\right)n\left(n+1\right)+12n\)

\(\left(n-1\right)n\left(n+1\right)⋮6;12n⋮6\)

\(\Rightarrow n^3+11n⋮6\)

2)\(n^3-19n=n^3-n-18n=\left(n-1\right)n\left(n+1\right)-18n\)

\(Có\left(n-1\right)n\left(n+1\right)⋮6;18n⋮6\)

\(\Rightarrow n^3-19n⋮6\)

15 tháng 9 2019

1)Ta có: n^3 + 11n

= n^3 +n^2 -n^2 -n+12n

= n^2(n+1) -n(n+1) +12n

= (n+1)(n^2-n) +12n

= (n+1)n(n-1) +12n

Vì (n+1)n(n-1) là 3 số tự nhiên liên tiếp nên

(n+1)n(n-1) chia hết cho 6

12n chia hết cho 6 với mọi n

=> n^3 + 11n chia hết cho 6 với mọi n

1 tháng 9 2019

1) a, Chứng minh a^5-a chia hết cho 5

b, Chứng minh a^7-a chia hết cho 7

1 tháng 9 2019

Phạm Lý câu tl này là bỏ.

Câu 1 mik gửi link r đs

13 tháng 4 2021

Xét hiệu a3 + b3 - (a + b) = a3 - a + b3 - b = a(a2 - 1) + b(b2 - 1) 

                                                                  = (a - 1)a(a + 1) + (b - 1)b(b + 1) 

Nhận thấy (a - 1)a(a + 1) \(⋮6\) (tích 3 số nguyên liên tiếp)

và \(\left(b-1\right)b\left(b+1\right)⋮6\)

=> (a - 1)a(a + 1) + (b - 1)b(b + 1) \(⋮\)6

=> a3 + b3 - (a + b)  \(⋮\)6

=> a3 + b3  \(⋮\)6 khi và chỉ khi a + b  \(⋮\)6

13 tháng 1 2019

n thuộc N

a) TH1: n chia hết cho 3 => n.(n2+1).(n2+2) chia chết cho 3

TH2: n chia 3 dư 1 => n=3k+1=> n2+2 =(3k+1)2+2=9k2+6k+3 chia hết cho 3

TH3: n chia 3 dư 2 => n=3k+2 => n2+2=(3k+2)2+2=9k2+12k+6 chia hết cho 3

=> đpcm