Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a, b, c lần lượt là chiều dài của tấm vải thứ nhất, tấm vải thứ hai và tấm vải thứ ba
Theo bài ra ta có: \(a-\frac{1}{7}a=b-\frac{2}{11}b=c-\frac{1}{3}c\)
\(\Rightarrow\frac{6}{7}a=\frac{9}{11}b=\frac{2}{3}c\)
\(\Rightarrow\frac{a}{\frac{7}{6}}=\frac{b}{\frac{11}{9}}=\frac{c}{\frac{3}{2}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{7}{6}}=\frac{b}{\frac{11}{9}}=\frac{c}{\frac{3}{2}}=\frac{a+b+c}{\frac{7}{6}+\frac{11}{9}+\frac{3}{2}}=\frac{210}{\frac{35}{9}}=54\)
\(\Rightarrow\frac{a}{\frac{7}{6}}=\frac{b}{\frac{11}{9}}=\frac{c}{\frac{3}{2}}=54\Rightarrow\hept{\begin{cases}a=63\\b=66\\c=81\end{cases}}\)
Vậy ...
Gọi độ dài 3 tấm vải lần lượt là : a; b; c ( a,b,c > 0 )
Theo bài ra ta có : a - \(\frac{1}{7}a\)= b - \(\frac{2}{11}b\)= c - \(\frac{1}{3}c\)Hay \(\frac{6a}{7}=\frac{9b}{11}=\frac{2c}{3}\)và a + b + c = 210
\(\frac{6a}{7}=\frac{9b}{11}=\frac{2c}{3}=\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}=\frac{18.\left(a+b+c\right)}{21+22+27}=\frac{18.210}{70}=54\)
=> a = 63 ( m ) ; b = 66 ( m ) ; c = 81 ( m )
Vậy ...
Gọi độ dài ba tấm vải lúc đầu là x, y, z (0<x,y,z <210)
Theo bài: sau khi bán \(\dfrac{1}{7}\) tấm vải thứ nhất, \(\dfrac{2}{11}\) tấm vải thứ hai và \(\dfrac{1}{3}\)tấm vải thứ ba thì chiều dài ba tấm bằng nhau
\(\Rightarrow\dfrac{6x}{7}=\dfrac{9y}{11}=\dfrac{2z}{3}\)
\(\Leftrightarrow\dfrac{18x}{21}=\dfrac{18y}{22}=\dfrac{18z}{27}=\dfrac{18\left(x+y+z\right)}{21+22+27}=\dfrac{18.210}{70}=54\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{54.21}{18}=63\\y=66\\z=81\end{matrix}\right.\)(tm 0 < x,y,z < 210)
Vậy độ dài 3 tấm vải lần lượt là 63, 66 và 81 m
- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(∈\) N*)
- Theo đề bài ta có:
+ Sau khi bán 1/2 tấm thứ nhất thì tấm thứ nhất còn lại: a−a.1/2 =a.1/2 =a/2 (1)
+ Sau khi bán 2/3 tấm thứ hai thì tấm thứ hai còn lại: b−b.2/3 =b.1/3 =b/3 (2)
+ Sau khi bán 3/4 tấm vải thứ ba thì tấm thứ ba còn lại: c−c.3/4 =c.1/4 =c4 (3)
Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau ⇒a/2 =b/3 =c/4
+ Ba tấm vải dài tổng cộng 108m \(⇒\) a+b+c=108(m)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
a/2 =b/3 =c/4 =a+b+c/2+3+4 =108/9 =12
⇒a=12.2=24(m) ; b=12.3=36(m); c=12.4=48(m)
Ta có:1/2 tấm 1=1/3 tấm 2 =1/4 tấm 3
Tấm 1 hai phần;tấm 2 ba phần;tấm 3 bốn phần
Tấm 1:108:(2+3+4)x2=24(m)
Tấm 2:24:2x3=36(m)
Tấm 3:36:3x4=48(m)
Đáp số:Tấm 1:24m
Tấm 2:36m
Tấm 3:48m
Bạn xem lại đề thử có sai ko rồi kết bạn với mình, mình giải cho
Ta có :
\(\frac{1}{2}\)tấm thứ nhất= \(\frac{1}{3}\)tấm thứ 2= \(\frac{1}{4}\)tấm thứ 3
tỉ số giứa 3 loại vải là:
\(\frac{1}{2}\):\(\frac{1}{3}\):\(\frac{1}{4}\)=2:1,5:1
Số m vải thứ nhất là
126:(2+1.5+1)*2=56(m)
Số m vải thứ hai là
126:(2+1.5+1)*1.5=42(m)
Số m vải thứ ba là
126-56-42=28(m)
Đáp số: tấm vải thứ nhất :56 m
tấm vải thứ hai : 42 m
tấm bải thứ ba : 28 m
Đáp án là:
Tấm vải thứ nhất: 63m.
Tấm vải thứ hai: 66m.
Tấm vải thứ ba: 81m.
Gọi số mét vải của 3 tấm vải lần lượt là a;b;c (a;b;c > 0)
Theo bài ra ta có:
a + b + c = 210 và: \(a-\frac{1}{7}a=b-\frac{2}{11}b=c-\frac{1}{3}c\)
\(\Rightarrow\frac{6}{7}a=\frac{9}{11}b=\frac{2}{3}c\Rightarrow\frac{6a}{7}=\frac{9b}{11}=\frac{2c}{3}\)
\(\Rightarrow\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}\)
Áp dụng tính chất dãy tỉ số bằng nhau và a+b+c=210; ta có:
\(\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}=\frac{18a+18b+18c}{21+22+27}=\frac{18\left(a+b+c\right)}{70}=\frac{18\times210}{70}=54\)
Từ \(\frac{18a}{21}=54\Rightarrow a=54\times21\div18=63\left(m\right)\)
\(\frac{18b}{22}=54\Rightarrow b=54\times22\div18=66\left(m\right)\)
\(\frac{18c}{27}=54\Rightarrow c=54\times27\div18=81\left(m\right)\)
Vậy tấm thứ nhất dài 63 m
tấm thứ hai dài 66 m
tấm thứ ba dài 81 m
Ba tấm vải dài tổng cọng 210m.Sau khi bán 1/7 tấm vải thứ nhất,2/11 tấm vải thứ 2 và 1/3 tấm vải thứ 3 thi sso vải còn lại bằng nhau.Hỏi lúc đầu mỗi tấm vải dài mấy m?
b1 :
a. gọi độ dài 3 cạnh của tg là a;b;c (a;b;c > 0; m)
vì 3 cạnh lần lượt tỉ lệ với 3;5;7 nên :
a/3 = b/5 = c/7
=> (a+b+c)/(3+5+7) = a/3 = b/5 = c/7 mà a+b+c = 45 (chu vi)
=> 45/15 = a/3 = b/5 = c/7 = 3
=> a = 3.3 = 9; b = 5.3 = 15; c = 7.3 = 21 (tm)
b,
gọi độ dài 3 cạnh của tg là a;b;c (a;b;c > 0; m)
vì 3 cạnh lần lượt tỉ lệ với 3;5;7 nên :
a/3 = b/5 = c/7
=> (a+c-b)/(3+7-5) = a/3 = b/5 = c/7 mà a+c-b = 20
=> 20/5 = a/3 = b/5 = c/7 = 4
=> a = 3.4 = 12; b = 4.5 = 20; c = 4.7 = 28 (tm)