Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a):
ta có (x2-x-2)2+(x-2)2
=((x-2)2(x+1))2+(x-2)2
=(x-2)2(x2+2x+2)
x2 - 5x = 0
=> x(x - 5) = 0
=> \(\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
b) (3x - 5)2 - 4 = 0
=> (3x - 5)2 = 0 + 4
=> (3x - 5)2 = 4
=> (3x - 5)2 = 22
=> \(\orbr{\begin{cases}3x-5=2\\3x-5=-2\end{cases}}\)
=> \(\orbr{\begin{cases}3x=7\\3x=3\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{7}{3}\\x=1\end{cases}}\)
a) \(=x^4-2x^3-3x^2+4x+4+x^2-4x+4\)
\(=x^4-2x^3-2x^2+8\)
\(=x^3\left(x-2\right)-2x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x^3-2x-4\right)\left(x-2\right)\)
\(=\left[x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\right]\left(x-2\right)\)
\(=\left(x-2\right)^2\left(x^2+2x+2\right)\)
b) \(=x^4-x+2019\left(x^2+x+1\right)\)
\(=x\left(x^3-1\right)+2019\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2019\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2019\right)\)\