K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2018

1a. \(x^2-7x+q=0\)

\(\Delta=b^2-4ac=\left(-7\right)^2-4.1.q=49-4q\)

Hai nghiệm của pt: \(x_1=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)-\sqrt{49-4q}}{2.1}=\dfrac{7-\sqrt{49-4q}}{2}\);

\(x_2=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-7\right)+\sqrt{49-4q}}{2.1}=\dfrac{7+\sqrt{49-4q}}{2}\)Ta có \(x_2>x_1;x_2-x_1=11\) => \(\dfrac{7+\sqrt{49-4q}}{2}-\dfrac{7-\sqrt{49-4q}}{2}=11\)

\(\Leftrightarrow\dfrac{7+\sqrt{49-4q}-7+\sqrt{49-4q}}{2}=11\)

\(\Leftrightarrow2\sqrt{49-4q}=22\)

\(\Leftrightarrow\sqrt{49-4q}=11\)

\(\Leftrightarrow49-4q=121\)

\(\Leftrightarrow q=-18\)

=> \(x_1=\dfrac{7-\sqrt{49-4.\left(-18\right)}}{2}=-2\); \(x_2=\dfrac{7+\sqrt{49-4.\left(-18\right)}}{2}=9\)

Vậy q=-18;x1=-2;x2=9.

b. Tương tự nhé :v

2. \(x_1=3;x_2=2\Rightarrow\left\{{}\begin{matrix}S=3+2=5\\P=3.2=6\end{matrix}\right.\)

Hai nghiệm trên là nghiệm của phương trình: \(x^2-Sx+P=0\)

\(\Rightarrow x^2-5x+6=0\)

3. Hai số a và b có tổng S=-3; P=-4

=> a và b là hai nghiệm của phương trình \(x^2-Sx+P=0\Rightarrow x^2+3x-4=0\) (*)

Ta có: \(a+b+c=1+3-4=0\)

=> PT (*) có 2 nghiệm \(x_1=1;x_2=\dfrac{c}{a}=-\dfrac{4}{1}=-4\)

Vậy a=1;b=-4

2 tháng 5 2016

kh biết

13 tháng 5 2019

\(x^2-\left(2m+3\right)x+m^2+3m+2=0\left(1\right).\)

a, Với m = 1, \(\left(1\right)\Leftrightarrow x^2-7m+6=0\Leftrightarrow\left(m-1\right)\left(m-6\right)\Leftrightarrow\orbr{\begin{cases}m=1\\m=6\end{cases}}\)

b, Với x = 2 \(\left(1\right)\Leftrightarrow4-2\left(2m+3\right)+m^2+3m+2=0\)

\(\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

Với m = 0, \(\left(1\right)\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

Với m = 1, \(\left(1\right)\Leftrightarrow x^2-5x+6=0\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

c, \(\Delta=4m^2+12m+9-4m^2-12m-8=1>0\)

Vì \(\Delta>0\)nên phương trình có 2 nghiệm phân biệt với mọi m.

13 tháng 5 2019

d, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+3\left(1\right)\\x_1.x_2=m^2+3m+2\left(2\right)\end{cases}}\)

Ta có: \(x_1^2+x_2^2=1\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

\(\Leftrightarrow\left(2m+3\right)^2-2\left(m^2+3m+2\right)=1\)

\(\Leftrightarrow4m^2+12m+9-2m^2-6m-4-1=0\)

\(\Leftrightarrow2m^2-6m-4=0\Leftrightarrow m^2-3m-2=0\Leftrightarrow m=\frac{3\pm\sqrt{17}}{2}\)

c, Phương trình có nghiệm này bằng 3 nghiệm kia:\(\Leftrightarrow x_1=3x_2\left(3\right)\)

Kết hợp (1) và (3) ta có hệ : \(\hept{\begin{cases}x_1+x_2=2m+3\\x_1=3x_2\end{cases}\Leftrightarrow\hept{\begin{cases}x_1=\frac{6m+9}{5}\\x_2=\frac{2m+3}{5}\end{cases}}\left(I\right)}\)

Kết hợp (I) và (2) ta được: \(\frac{\left(6m+9\right)\left(2m+3\right)}{25}=m^2+3m+2\)

\(\Leftrightarrow25m^2+75m+50=12m^2+36m^2+27\)

\(\Leftrightarrow13m^2+39m^2+23=0\)

...

21 tháng 5 2016

a) x1^2+x2^2=(x1+x2)^2-2x1x2

x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)

áp dụng viét thay vô

b) giải hệ pt

đenta>=0

x1+x2=-m

x1x2=m+3

và 2x1+3x2=5

c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại

d)áp dụng viét 

x1+x2=-m

x1x2=m+3

CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3

22 tháng 7 2020

Áp dụng định lí viet cho phương trình: x2 - 5x - 3 = 0 

Ta có: \(x_1+x_2=5;x_1.x_2=-3\)

=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=5^2+2.3=31\)

Xét: 

\(\left(2x_1^2-1\right)+\left(2x_2^2-1\right)=2\left(x_1^2+x_2^2\right)-2=2.31-2=60\)

\(\left(2x_1^2-1\right).\left(2x_2^2-1\right)=4x_1^2x_2^2-2\left(x_1^2+x_2^2\right)+1=4.\left(-3\right)^2-2.31+1=-25\)

=> Phương trình bậc 2 cần tìm là: 

x2 - 60 x - 25 = 0

19 tháng 3 2017

Max nhiều =((

a) (Giải cụ thể hơn xíu nè!)

a = 1; b = -10; c = -m + 20

\(\Delta=b^2-4ac\)

     \(=\left(-10\right)^2-4.1.\left(-m+20\right)\)

     \(=100+4m-80\)

     \(=20+4m\)

Để pt có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow20+4m>0\Leftrightarrow m>-5\)

b/ Theo Vi-et ta có: \(P=x_1x_2=\frac{c}{a}=-m+20\)

Để pt có 2 nghiệm trái dấu \(\Leftrightarrow P< 0\Leftrightarrow-m+20< 0\Leftrightarrow m>20\)

c/ Theo Vi-et ta có: \(S=x_1+x_2=-\frac{b}{a}=10\)

                               \(P=-m+20\)

Để pt có 2 nghiệm dương \(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P>0\\S>0\end{cases}}\Leftrightarrow\hept{\begin{cases}P>0\\S>0\end{cases}\Leftrightarrow\hept{\begin{cases}-m+20>0\\10>0\left(hiennhien\right)\end{cases}\Leftrightarrow}-m< 20}\)

18 tháng 3 2017

a) Để phương trình có 2 nghiệm phân biệt thì \(\Delta'>0\)

\(\Delta'=5+m\Leftrightarrow m>-5\)