K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2015

a, Giả sử tứ giác ABCD có 90 độ < gA , gB , gC ,gD < 180 độ ==> gA + gB + gC + gC > 360 độ. Điều này trái với định lý tổng các góc trong tứ giác ( = 360 độ ) 
Vậy tứ giác lồi có nhiều nhất là 3 góc tù. 
Cm tương tự với giả sử cả 4 góc đều nhọn ==> tổng 4 góc nhọn < 360 dộ.(vô lí ) 
==> tứ giác có nhiều nhất là 3 góc nhọn ( Góc thứ tư là góc tù ) 
Nếu cả 4 góc đều vuông ==> tổng 4 góc = 360 độ.(Đó chính là hình chữ nhật, hình vuông )

25 tháng 6 2015

bn có thể cm giup3 mình dc ko>?

14 tháng 7 2018

k đúng mình mình giải cho

14 tháng 7 2018

a,b,c sai còn d đúng

Giải thích vẽ hình ra sẽ thấy

19 tháng 6 2019

I O A B C D 1 1

a) Ta có: \(\widehat{B}=120^o,\widehat{A}=90^o\Rightarrow\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}=150^o\)

CO, DO là hai tia phân giác góc C và góc D

=> \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)=\frac{1}{2}.150^o=75^o\)

=> \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-75^o=105^o\)

b) 

Xét tam giác COD

Ta có: \(\widehat{COD}=180^o-\left(\widehat{C_1}+\widehat{D_1}\right)=180^o-\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)

Vì: \(\widehat{C_1}+\widehat{D_1}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{C}+\widehat{D}\right)\)

Mặt khác: Xét tứ giác ABCD ta có: \(\widehat{C}+\widehat{D}=360^o-\widehat{A}-\widehat{B}\)

=> \(\widehat{COD}=180^o-\frac{1}{2}\left(360^o-\widehat{A}-\widehat{B}\right)=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}\)

c) Tương tự ta cũng chứng minh dc:

\(\widehat{BIA}=\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}\)

=> \(\widehat{COD}+\widehat{BIA}=\frac{1}{2}\widehat{A}+\frac{1}{2}\widehat{B}+\frac{1}{2}\widehat{C}+\frac{1}{2}\widehat{D}=\frac{1}{2}\left(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\right)=\frac{1}{2}.360^o=180^o\)

=>\(\widehat{FOE}+\widehat{EIF}=180^o\)

=> \(\widehat{OEI}+\widehat{IFO}=180^o\)

Vậy tứ giác EIF có các góc đối bù nhau!

Ta có BAD + ABC + BCD + CDA = 360 độ

ADC + BCD = 360 - 120 - 90 = 150 độ

=> BCO = OCD = 1/2 BCD

=> ADO = ODC = 1/2 ADC

=> ODC + OCD = 1/2 ODC + 1/2 OCD = ODC+OCD/2

=> ODC + OCD = 150 /2 =75 độ

Mà ODC + OCD +DOC = 180 độ

=> DOC = 180 - 75 = 105 độ

B) COD = 180 - (ODC + OCD) 

=> COD = 180 - 1/2ADC + 1/2 BCD

Mà ADC + BCD = 360 - ( BAD + ABC)

COD = 180 - [ 360 - 1/2(BAD + ABC )]

19 tháng 6 2018

cho tứ giác ABCD có hai góc đối bù nhau.Đường thẵng AD và BC cắt nhau tai E,hai đường thẵng AB và DC cắt nhau tại F.Kẻ phân giác của hai góc BFC và CEP cắt nhau tại M. CMR góc EMF =90 

26 tháng 7 2016

Tách ra đi bạn

14 tháng 7 2016

Bài 1:

Giải: Vì AB // CD

    => A + D =180

    mà A = 3D => 3D + D = 180o

                        =>  4D = 180o

                        =>   D = 45o   => A = 135o

Ta có: AB // CD => B + C = 180o

        mà B - C = 30o  hay B = C + 30o

=> C + 30+ C = 180o

=>  2C = 150o  => C = 75o  => B = 105o

 

22 tháng 9 2016

Bài 1:

Vì AB // CD (gt)

\(\Rightarrow\)\(\widehat{A} + \widehat{D} = 180^0\) (kề bù)

mà \(\widehat{A} = 3 \widehat{D}\) (gt)

\(\Rightarrow\)\(\widehat{D} = 45^0\) và \(\widehat{A} = 135^0\)

Vì AB // CD (gt)

\(\Rightarrow\)\(\widehat{B} + \widehat{C} = 180^0\) (kề bù)

mà \(\widehat{B} - \widehat{C} = 30^0\) (gt)

\(\Rightarrow\)\(2 \widehat{B} = 210^0\)

\(\Rightarrow\)\(\widehat{B} = 105^0\)

\(\Rightarrow\)\(\widehat{C} = 75^0\)

Vậy.......