Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(15\times\left(\frac{212121}{434343}+\frac{333333}{353535}\right)=15\times\left(\frac{21\times10101}{43\times10101}+\frac{33\times10101}{35\times10101}\right)\)
\(=15\times\left(\frac{21}{43}+\frac{33}{35}\right)=\frac{6462}{301}\)
b) \(\frac{639\times721721}{721\times639639}=\frac{639\times721\times1001}{721\times639\times1001}=1\)
c) \(\frac{327\times412+400}{328\times412-12}=\frac{\left(328-1\right)\times412+400}{328\times412-12}=\frac{328\times412-412+400}{328\times412-12}\)
\(=\frac{328\times412-12}{328\times412-12}=1\)
d) \(9\times\left(\frac{151515}{171717}+\frac{131313}{181818}\right)=9\times\left(\frac{15\times10101}{17\times10101}+\frac{13\times10101}{18\times10101}\right)=9\times\left(\frac{15}{17}+\frac{13}{18}\right)\)
\(=9\times\frac{491}{306}=\frac{491}{34}\)
\(=15.\left(\frac{21.10101}{43.10101}+\frac{33.10101}{35.10101}\right)\)
\(=15.\left(\frac{21}{43}+\frac{33}{35}\right)\)
\(=15.\frac{2154}{1505}\)
\(=\frac{6462}{301}\)
\(=15.\left(\frac{21.10101}{43.10101}-\frac{33.10101}{35.10101}\right)\)
\(=15.\left(\frac{21}{43}-\frac{33}{35}\right)\)
\(=15.\frac{-684}{1505}=\frac{-2052}{301}\)
a, \(\frac{7}{4x}\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)=22\)
\(\frac{7}{4x}\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)=22\)
\(\frac{7}{4x}\left[33.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\right]=22\)
\(\frac{7}{4x}\left[33.\left(\frac{35}{420}+\frac{21}{420}+\frac{14}{420}+\frac{10}{420}\right)\right]=22\)
\(\frac{7}{4x}\left[33.\frac{4}{21}\right]=22\)
\(\frac{7}{4x}.\frac{44}{7}\)=22
\(\frac{11}{x}=22\)
x=11:22
x=\(\frac{1}{2}\)
b,\(\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right).x=1\)
Đặt A\(=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
Ta có :\(A=\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(\Rightarrow4A=4.\left(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right)\)
\(\Rightarrow4A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32}{64}+\frac{16}{64}+\frac{8}{64}+\frac{4}{64}+\frac{2}{64}+\frac{1}{64}\)
\(\Rightarrow4A=\frac{32+16+8+4+2+1}{64}=\frac{63}{64}\)
\(\Rightarrow A=\frac{63}{64}:4=\frac{63}{256}\)
\(\Rightarrow\frac{63}{256}.x=1\)
\(\Leftrightarrow x=1:\frac{63}{256}=\frac{256}{63}\)
bài 2
a] = 3 x \(\frac{4343}{7171}\)= \(\frac{17372}{7171}\)= \(\frac{172}{71}\)
b] = \(\frac{1}{33}\)x \(\frac{44}{7}\)= \(\frac{1}{3}\)x \(\frac{4}{7}\)=\(\frac{4}{21}\)
bài 1
a] y là 9
b] <=> 64y + 36y = 700 - 75 - 225
<=> 100y = 400
<=> y = 4
trên lớp cô sửa rồi nên mình giải luôn:
1) Tìm y
a) y3 + 3y = 12 x 11
y3 + 3y = 132
y x 10 + 3 + 3 x 10 + y = 132
( y x 10 + y ) + ( 3 x 10 + 3 ) = 132
11 x y + 33 = 132
11 x y = 132 - 33
11 x y = 99
y = 99 : 11
y = 9
b) 64 x y + 225 = 700 - 75 - 36 x y
64 x y + 225 = 625 - 36 x y
64 x y + 36 x y = 625 -225
64 x y + 36 x y = 400
( 64 + 36 ) x y = 400
100 x y = 400
y = 400 : 100
y = 4
2) Tính
a) \(\frac{4343}{7171}+\frac{4343}{7171}+\frac{4343}{7171}+\frac{4343}{7171}\)
\(=\frac{4343}{7171}\times4\)
\(=\frac{43}{71}\times4\)
\(=\frac{172}{71}\)
b) A = \(\frac{1}{33}\times\left(\frac{33}{12}+\frac{3333}{2020}+\frac{333333}{303030}+\frac{33333333}{42424242}\right)\)
Ta có:
\(\frac{3333}{2020}=\frac{3333:101}{2020:101}=\frac{33}{20}\)
\(\frac{333333}{303030}=\frac{333333:10101}{303030:10101}=\frac{33}{30}\)
\(\frac{33333333}{42424242}=\frac{33333333:1010101}{42424242:1010101}=\frac{33}{42}\)
A = \(\frac{1}{33}\times\left(\frac{33}{12}+\frac{33}{20}+\frac{33}{30}+\frac{33}{42}\right)\)
A = \(\frac{1}{33}\times33\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
A = 1 x \(\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)\)
A = 1 x \(\left(\frac{1}{3x4}+\frac{1}{4x5}+\frac{1}{5x6}+\frac{1}{6x7}\right)\)
A = 1 x \(\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)\)
A = 1 x \(\left(\frac{1}{3}-\frac{1}{7}\right)\)
A = 1 x \(\left(\frac{7}{21}-\frac{3}{21}\right)\)
A = 1 x \(\frac{4}{21}\)
A = \(\frac{4}{21}\)
\(15\times\left(\frac{212121}{434343}+\frac{333333}{555555}\right)=15\times\left(\frac{21}{43}+\frac{3}{5}\right)=15\times\frac{234}{215}=\frac{702}{43}\)