Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\)
\(=\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\frac{44}{45}\)
\(=\frac{11}{45}\)
Đặt \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\) là A.
Ta có:
\(A=\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\)
\(4A=4\left(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}\right)\)
\(4A=\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+...+\frac{4}{41\cdot45}\)
\(4A=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\)
\(4A=1-\frac{1}{45}\)
\(4A=\frac{44}{45}\)
\(A=\frac{44}{45}:4\)
\(A=\frac{11}{45}\)
Vậy \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+\frac{1}{9\cdot13}+\frac{1}{13\cdot17}+...+\frac{1}{41\cdot45}=\frac{11}{45}\)
a) A = 4/5.9 + 4/9.13 + 4/13.17 + ... + 4/41/45
A = 1/5 - 1/9 + 1/9 - 1/13 + 1/13 - 1/17 + ... + 1/41 - 1/45
A = 1/5 - 1/45
A = 8/45
b) B = ( 1 - 1/2 ) . ( 1 - 1/3 ) . ( 1 - 1/4 ) . ..... . ( 1 - 1/100 )
B = 1/2 . 2/3 . 3/4 . .... . 99/100
B = \(\frac{1.2.3.......99}{2.3.4......100}\)
B = 1/100
B = \(\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
B = \(\frac{1}{2}.\frac{2}{3}.....\frac{99}{100}\)
B = \(\frac{1}{100}\)
A= 1/5.9+1/9.13+1/13.17+1/17.21+1/21.25
4A= 4/5.9+4/9.13+4/13.17+4/17.21+4/21.25
4A= (1/5-1/9)+(1/9-1/13)+(1/13-1/17)+(1/17-1/21)+(1/21-1/25)
4A= 1/5- 1/25
4A= 4/25
A= 4/25 :4
A= 1/25
bài này nâng cao lớp 6 mk giải rồi bạn nhờ ai giảng hộ nha nếu bn 5 lên 6
B=1/4.(4/1.5+4/5.9+......+4/25.29)
B=1/4.(1-1/5+1/5-1/9+.....+1/25-1/29)
B=1/4.(1-1/29)
B=1/4.28/29
B=7/29
\(B=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+\frac{1}{17.21}+\frac{1}{21.25}+\frac{1}{25.29}\)
\(\Rightarrow4B=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}+\frac{4}{21.25}+\frac{4}{25.29}\)
\(\Rightarrow4B=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}+\frac{1}{21}-\frac{1}{25}+\frac{1}{25}-\frac{1}{29}\)
\(\Rightarrow4B=1-\frac{1}{29}\)
\(\Rightarrow4B=\frac{29}{29}-\frac{1}{29}=\frac{28}{29}\)
\(\Rightarrow B=\frac{28}{29}:4=\frac{28}{29}.\frac{1}{4}=\frac{7}{29}\)
Vậy ....
D=1/1.5+1/5.9+...+1/41.45
4D=4/1.5+4/5.9+...+4/41.45
4D=1-1/5+1/5-1/9+...+1/41-1/45
4D=1-1/45
D=44/45:4=11/45
\(\frac{7}{1.5}+\frac{7}{5.9}+\frac{7}{9.13}+\frac{7}{13.17}+\frac{7}{17.21}\)
\(=\frac{7}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+\frac{4}{17.21}\right)\)
\(=\frac{7}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{7}{4}.\left(1-\frac{1}{21}\right)\)
\(=\frac{7}{4}.\frac{20}{21}=\frac{7.4.5}{4.7.3}\)
\(=\frac{5}{3}\)
~ Rất vui vì giúp đc bn ~
Bài giải
\(\frac{7}{1\cdot5}+\frac{7}{5\cdot9}+\frac{7}{9\cdot13}+\frac{7}{13\cdot17}+\frac{7}{17\cdot21}\)
\(=\frac{7}{4}\left(\frac{4}{1\cdot5}+\frac{4}{5\cdot9}+\frac{4}{9\cdot13}+\frac{4}{13\cdot17}+\frac{4}{17\cdot21}\right)\)
\(=\frac{7}{4}\left(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{21}\right)\)
\(=\frac{7}{4}\left(1-\frac{1}{21}\right)\)
\(=\frac{7}{4}\cdot\frac{20}{21}\)
\(=\frac{35}{21}\)
\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{97.101}\)
\(=\frac{1}{4}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{4}.\frac{100}{101}\)
\(=\frac{25}{101}\)
\(E=\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{97\cdot100}\)
\(=\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{100}\right):3\)
\(=\left(1-\frac{1}{100}\right):3=\frac{33}{100}\)
\(F=\frac{3}{1\cdot5}+\frac{3}{5\cdot9}+...+\frac{3}{74\cdot101}\)
\(=\left(3-\frac{3}{5}+\frac{3}{5}-\frac{3}{9}+...+\frac{3}{74}-\frac{3}{101}\right):4\)
\(=\left(3-\frac{3}{101}\right):4=\frac{75}{101}\)
Đề?
\(\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{41.45}\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(=\frac{1}{4}.\frac{8}{45}=\frac{2}{45}\)
sai đề
1/5.9+1/9.13+1/13.17+ ...+1/41.45
dễ cái này em nhân 4 lên rồi tính như bình thường là đcj