Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{-6}{3}\left[x-\frac{1}{4}\right]=2x-1\)
\(-2x-\left[\frac{1}{4}.-2\right]=2x-1\)\
\(-2x-\frac{-1}{2}=2x-1\)
\(2x--2x=1-\frac{-1}{2}\)
\(\)\(4x=\frac{3}{2}\)
\(x=\frac{3}{2}:4\)
\(x=\frac{3}{8}\)
a, \(A=\frac{6}{10.11}+\frac{6}{11.12}+\frac{6}{12.13}+...+\frac{6}{69.70}\)
\(A=\frac{6}{10}-\frac{6}{11}+\frac{6}{11}-\frac{6}{12}+\frac{6}{12}-\frac{6}{13}+...+\frac{6}{69}-\frac{6}{70}\)
\(A=\frac{6}{10}-\frac{6}{70}\)
\(A=\frac{18}{35}\)
b, \(B=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\)
\(B=\frac{4}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\right)\)
\(B=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)
\(B=2.\left(\frac{1}{2}-\frac{1}{2020}\right)\)
\(B=2.\frac{1009}{2020}\)
\(B=\frac{1009}{1010}\)
Chúc bạn học tốt
Hơi thắc mắc câu B cậu oi!!!Gỉai thích cho mk vs ạ!!Thanks
Ta có \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}=1-\frac{9}{10^{12}-1}\)
\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Vì \(\frac{9}{10^{12}-1}< \frac{9}{10^{11}+1};1=1\Rightarrow1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\Rightarrow\frac{10^{11}-1}{10^{12}-1}< \frac{10^{10}+1}{10^{11}+1}\)
Suy ra\(A< B\)
\(A=\frac{10^{11}-1}{10^{12}-1}\) => \(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}\)
=> \(10A=1-\frac{9}{10^{12}-1}\)=> 10A < 1
\(B=\frac{10^{10}+1}{10^{11}+1}\) => \(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}\)
=> \(10B=1+\frac{9}{10^{11}+1}\)=> 10B > 1
=> 10B > 10A => B > A
ĐS: B > A
\(\frac{x-2}{4}=-\frac{16}{2-x}\)
\(\Leftrightarrow x-2=-\frac{64}{2-x}\)
\(\Leftrightarrow\left(x-2\right)\left(2-x\right)=-64\)
\(\Leftrightarrow2x-x^2-4+2x=-64\)
\(\Leftrightarrow4x-x^2-4+64=0\)
\(\Leftrightarrow4x-x^2-60=0\)
\(\Leftrightarrow x^2-4x-60=0\)
\(\Leftrightarrow\left(x-10\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-10=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=10\\x=-6\end{cases}}}\)
Vậy \(x\in\left\{10;-6\right\}\)
\(\frac{2^{23}-2^{23}.5}{2^{24}}=\frac{2^{23}\left(1-5\right)}{2^{24}}=-2\)
\(\frac{\left(3.2^{18}\right)^2}{11.2^{35}-2^{36}}=\frac{3^2.2^{36}}{2^{35}\left(11-2\right)}=\frac{18}{9}=2\)
\(1+4+16+...+4^{2021}\)
Đặt biểu thức trên là \(A\), ta có:
\(A=1+4+16+...+4^{2021}\)
\(A=1+4+4^{2}+...+4^{2021}\)
\(4A=4+4^{2}+4^{3}+...+4^{2022}\)
\(4A-A=(4+4^{2}+4^{3}+...+4^{2022})-(1+4+4^{2}+...+4^{2021})\)
\(3A=4^{2022}-1\)
\(A=\dfrac{4^{2022}-1}{3}\)