K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

a.(2x +1). (2x+1)=1

Mà chỉ có 1.1=1

Vậy 2x + 1=1

               2x=1-1

               2x=0 

Suy ra: x= 0

18 tháng 10 2017

Hoàng Khánh Thi thiếu nha.

a) (2x+1)2 = \(\left(\pm1\right)^2\)

=> 2x + 1 = 1 hoặc 2x + 1 = -1

=> 2x = 0 hoặc 2x = -2

=> x = 0 hoặc x = -1.

a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)

=>-38x=7

hay x=-7/38

b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)

=>1/2x=0

hay x=0

c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)

=>-29x=15

hay x=-15/29

d: \(\Leftrightarrow x^2+2x-x-3=5\)

\(\Leftrightarrow x^2+x-8=0\)

\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)

e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)

\(\Leftrightarrow-25x^2=4\)

\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)

6 tháng 11 2017

đề bài là j vậy

2 tháng 9 2018

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

13 tháng 11 2019

b) \(\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)

\(\Rightarrow\frac{3}{5}x=\left(-\frac{1}{7}\right)+\frac{1}{2}\)

\(\Rightarrow\frac{3}{5}x=\frac{5}{14}\)

\(\Rightarrow x=\frac{5}{14}:\frac{3}{5}\)

\(\Rightarrow x=\frac{25}{42}\)

Vậy \(x=\frac{25}{42}.\)

c) \(5-\left|3x-1\right|=3\)

\(\Rightarrow\left|3x-1\right|=5-3\)

\(\Rightarrow\left|3x-1\right|=2\)

\(\Rightarrow\left[{}\begin{matrix}3x-1=2\\3x-1=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x=3\\3x=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3:3\\x=\left(-1\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{1;-\frac{1}{3}\right\}.\)

d) \(\left(1-2x\right)^2=9\)

\(\Rightarrow\left(1-2x\right)^2=\left(\pm3\right)^2\)

\(\Rightarrow1-2x=\pm3.\)

\(\Rightarrow\left[{}\begin{matrix}1-2x=3\\1-2x=-3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=-2\\2x=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\left(-2\right):2\\x=4:2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

Vậy \(x\in\left\{-1;2\right\}.\)

Chúc bạn học tốt!

13 tháng 11 2019

Chương I  : Số hữu tỉ. Số thực

15 tháng 4 2018

ta có:  f(x) + g(x) = ( 7 x^6 - 6x ^5 +5x^4 -4x^3 +3x^2 -2x +1) - ( x - 2x^2 +3x^3 - 4x^4 + 5x^5 - 6x^6)

                          \(=7x^6-6x^5+5x^4-4x^3+3x^2-2x+1-x+2x^2-3x^3+4x^4-5x^5+6x^6\)

                      \(=\left(7x^6+6x^6\right)-\left(6x^5+5x^5\right)+\left(5x^4+4x^4\right)-\left(4x^3+3x^3\right)+\left(3x^2+2x^2\right)-\left(2x+x\right)+1\)

\(=13x^6-11x^5+9x^4-7x^3+5x^2-3x+1\)

Chúc bn học tốt !!!!!!

4 tháng 12 2021

Uhhhhhhhhhhhhhhhhhhhhhhhhhh😥😥😥😥😥😥😥😥😥😥😥????????????...............

29 tháng 6 2019

\(a,\frac{1}{2}x+\frac{5}{2}=\frac{7}{2}x-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x+\frac{5}{2}-\frac{7}{2}x=-\frac{3}{4}\)

\(\Leftrightarrow\frac{1}{2}x-\frac{7}{2}x+\frac{5}{2}=-\frac{3}{4}\)

\(\Leftrightarrow-3x+\frac{5}{2}=-\frac{3}{4}\)

\(\Leftrightarrow-3x=-\frac{13}{4}\)

\(\Leftrightarrow x=-\frac{13}{4}:(-3)=-\frac{13}{4}:\frac{-3}{1}=-\frac{13}{4}\cdot\frac{-1}{3}=\frac{13}{12}\)

29 tháng 6 2019

\(b,\frac{2}{3}x-\frac{2}{5}=\frac{1}{2}x-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{2}{5}-\frac{1}{2}x=-\frac{1}{3}\)

\(\Leftrightarrow\frac{2}{3}x-\frac{1}{2}x-\frac{2}{5}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{6}x-\frac{2}{5}=-\frac{1}{3}\)

\(\Leftrightarrow\frac{1}{6}x=\frac{1}{15}\)

\(\Leftrightarrow x=\frac{1}{15}:\frac{1}{6}=\frac{1}{15}\cdot6=\frac{6}{15}=\frac{2}{5}\)

\(c,\frac{1}{3}x+\frac{2}{5}(x+1)=0\)

\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x+\frac{2}{5}=0\)

\(\Leftrightarrow\frac{11}{15}x=-\frac{2}{5}\)

\(\Leftrightarrow x=-\frac{6}{11}\)

d,e,f Tương tự

Cái này có cái VD : x(8 + x^2) nên nó có vẻ hơi bị trìu tượng 1 chút.

Ta có : \(M\left(x\right)=x^3\left(9x^2-1\right)-4x\left(x-1\right)+9x^5-4x^2+7+3x^4\)

\(=9x^5-4x^3-4x^2-4x+9x^5-4x^2+7+3x^4\)

\(=18x^5-4x^3-8x^2-4x+7+3x^4\)

\(N\left(x\right)=10x^2+5x^3-3x^3\left(x+1\right)-x\left(8+x^2\right)+8x-7\)

\(=10x^2+5x^3-3x^4+3x^3-8x-x^3+8x-7\)

\(=10x^2+7x^3-3x^4-7\)