Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b. \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....+\frac{1}{2003}\)= \(\frac{1}{2013}\)
c. \(5.\left(\frac{1}{14}+\frac{1}{84}+\frac{1}{204}+\frac{1}{374}\right)\)= 5. \(\frac{1}{11}\)= \(\frac{5}{11}\)
Mình biết 2 câu này thôi, thông cảm nhá...!!!
d) Ta có: 100-(1+1/2+1/3+1/4+...+1/100)
=1x100-(1+1/2+1/3+1/4+...+1/100)
=(1-1)+(1-1/2)+(1-1/3)+(1-1/4)+....+(1-1/100)
=1/2+2/3+3/4+...+99/100
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+.......+\dfrac{1}{x\cdot\left(x+1\right)}=\dfrac{122}{123}\)
\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+......+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{122}{123}\)
\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{122}{123}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{123}\)
\(\Leftrightarrow x=122\)
( 1-1/2) . (1-1/3).(1-1/4).......(1-1/2016) . (1-1/2017)
=1/2.2/3.3.4x...x2015/2016.2016/2017
=1.2.3.4. ... .2015.2016/2.3.4.5. ... .2016.2017
(giống nhau bạn gạch đi )
=1/2017
a)=\(\frac{1}{3}\)
b)=\(\frac{39}{70}\)
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~ Và chúc các bạn trả lời câu hỏi này kiếm được nhiều k hơn ~~~~~~~~~~~~
\(a,\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2017\cdot2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}.\)
\(b,\left[x\cdot\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}:\frac{9}{4}\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{7}{2}\cdot\frac{4}{9}\)
\(\Leftrightarrow\left[x\cdot\frac{5}{3}-1\right]:9=\frac{14}{9}\)
\(\Leftrightarrow x\cdot\frac{5}{3}-1=\frac{14}{9}\cdot9\)
\(\Leftrightarrow x\cdot\frac{5}{3}-1=14\)
\(\Leftrightarrow x\cdot\frac{5}{3}=14+1\)
\(\Leftrightarrow x\cdot\frac{5}{3}=15\)
\(\Leftrightarrow x=15:\frac{5}{3}\)
\(\Leftrightarrow x=15\cdot\frac{3}{5}\)
\(\Leftrightarrow x=9.\)
a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2017.2018}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\frac{1}{1}-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
b)\(\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:2,25\)
\(\Leftrightarrow\left[x.\frac{5}{3}-1\right]:9=3\frac{1}{2}:\frac{9}{4}=1\frac{5}{9}\)
\(\Rightarrow x.\frac{5}{3}-1=1\frac{5}{9}.9=14\)
\(\Rightarrow x.\frac{5}{3}=14+1=15\)
\(\Rightarrow x=15:\frac{5}{3}=9\)