Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) -6x + 3(7 + 2x)
= -6x + 21 + 6x
= (-6x + 6x) + 21
= 21
b) 15y - 5(6x + 3y)
= 15y - 30 - 15y
= (15y - 15y) - 30
= -30
c) x(2x + 1) - x2(x + 2) + (x3 - x + 3)
= 2x2 + x - x3 - 2x2 + x3 - x + 3
= (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
= 3
d) x(5x - 4)3x2(x - 1) ??? :V
Bài 2:
a) 3x + 2(5 - x) = 0
<=> 3x + 10 - 2x = 0
<=> x + 10 = 0
<=> x = -10
=> x = -10
b) 3x2 - 3x(-2 + x) = 36
<=> 3x2 + 2x - 3x2 = 36
<=> 6x = 36
<=> x = 6
=> x = 5
c) 5x(12x + 7) - 3x(20x - 5) = -100
<=> 60x2 + 35x - 60x2 + 15x = -100
<=> 50x = -100
<=> x = -2
=> x = -2
1) \(\frac{25}{12}.x+\frac{11}{15}=\frac{9}{10}\)
=> \(\frac{25}{12}.x=\frac{9}{10}-\frac{11}{15}\)
=> \(\frac{25}{12}.x=\frac{1}{6}\)
=> \(x=\frac{1}{6}:\frac{25}{12}\)
=> \(x=\frac{2}{25}\)
Vậy \(x=\frac{2}{25}\).
3) \(\frac{29}{12}.\left[x\right]-\frac{5}{6}=\frac{3}{8}\)
=> \(\frac{29}{12}.\left[x\right]=\frac{3}{8}+\frac{5}{6}\)
=> \(\frac{29}{12}.x=\frac{29}{24}\)
=> \(x=\frac{29}{24}:\frac{29}{12}\)
=> \(x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\).
4) \(\left[4x+\frac{3}{4}\right]-\frac{5}{4}=2\)
=> \(\left[4x+\frac{3}{4}\right]=2+\frac{5}{4}\)
=> \(4x+\frac{3}{4}=\frac{13}{4}\)
=> \(4x=\frac{13}{4}-\frac{3}{4}\)
=> \(4x=\frac{5}{2}\)
=> \(x=\frac{5}{2}:4\)
=> \(x=\frac{5}{8}\)
Vậy \(x=\frac{5}{8}\).
5) 2x + 2x+3 = 144
⇔ 2x + 2x . 23 = 144
⇔ 2x . (1 + 23) = 144
⇔ 2x . 9 = 144
⇔ 2x = 144 : 9
⇔ 2x = 16
⇔ 2x = 24
=> x = 4
Vậy x = 4.
Chúc bạn học tốt!
1: \(M\left(x\right)=A\left(x\right)-2B\left(x\right)+C\left(x\right)\)
\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+C\left(x\right)\)
\(=4x^4-4x^3-x^2+8x-4+x^4+4x^3+3x^2-8x+\dfrac{67}{16}\)
\(=5x^4+2x^2+\dfrac{3}{16}\)
2: \(M\left(-0.5\right)=5\cdot\left(-\dfrac{1}{2}\right)^4+2\cdot\left(-\dfrac{1}{2}\right)^2+\dfrac{3}{16}=1\)
Bài 2:
a: (x+3)/5=5/7
=>x+3=25/7
hay x=4/7
b: ||x-5|-4|=5
=>|x-5|-4=5 hoặc |x-5|-4=-5
=>|x-5|=9
=>x-5=9 hoặc x-5=-9
=>x=14 hoặc x=-4
c: \(\left(-\dfrac{4}{3}\right)^{3x+1}=\dfrac{256}{81}\)
nên 3x+1=4
=>3x=3
hay x=1
Cái này có cái VD : x(8 + x^2) nên nó có vẻ hơi bị trìu tượng 1 chút.
Ta có : \(M\left(x\right)=x^3\left(9x^2-1\right)-4x\left(x-1\right)+9x^5-4x^2+7+3x^4\)
\(=9x^5-4x^3-4x^2-4x+9x^5-4x^2+7+3x^4\)
\(=18x^5-4x^3-8x^2-4x+7+3x^4\)
\(N\left(x\right)=10x^2+5x^3-3x^3\left(x+1\right)-x\left(8+x^2\right)+8x-7\)
\(=10x^2+5x^3-3x^4+3x^3-8x-x^3+8x-7\)
\(=10x^2+7x^3-3x^4-7\)
\(a,\frac{1}{3}x+0.25=\frac{5}{7}\)
\(\Leftrightarrow\frac{1}{3}x=\frac{13}{28}\)
\(\Leftrightarrow x=\frac{39}{28}\)
vậy...
\(b,\frac{11}{12}x+0,25=\frac{5}{6}\)
\(\Leftrightarrow\frac{11}{12}x=\frac{7}{12}\)
\(\Leftrightarrow x=\frac{7}{11}\)
vậy.....
\(c,\left(\frac{-1}{3}\right)^2+\frac{2}{3}x=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{9}+\frac{2}{3}x=\frac{1}{4}\)
\(\Leftrightarrow\frac{2}{3}x=\frac{5}{36}\)
\(\Leftrightarrow x=\frac{5}{24}\)
vậy......
\(d,\left(3x+2\right)^3=-\frac{8}{125}\)
\(\Leftrightarrow3x+2=-\frac{2}{5}\)
\(\Leftrightarrow3x=-\frac{12}{5}\)
\(\Leftrightarrow x=-\frac{4}{5}\)
vậy.......
\(\frac{1}{3x}+0,25=\frac{5}{7}\)
\(\frac{1}{3x}+\frac{1}{4}=\frac{5}{7}\)
\(\frac{1}{3x}=\frac{13}{28}\)
\(3x=\frac{28}{13}\)
\(x=\frac{28}{39}\)
\(\frac{11}{12x}+0,25=\frac{5}{6}\)
\(\frac{11}{12x}+\frac{1}{4}=\frac{5}{6}\)
\(\frac{11}{12x}=\frac{7}{12}\)
\(x=\frac{11}{12}:\frac{7}{12}\)
\(x=\frac{7}{11}\)
\(\left(-\frac{1}{3}\right)^2+\frac{2}{3x}=\frac{1}{4}\)
\(\frac{1}{9}+\frac{2}{3x}=\frac{1}{4}\)
\(\frac{2}{3x}=\frac{5}{36}\)
\(x=\frac{2}{3}:\frac{5}{36}\)
\(x=\frac{5}{24}\)
\(\left(3x+2\right)^3=\left(-\frac{8}{125}\right)\)
\(\left(3x+2\right)^3=\left(-\frac{2}{5}\right)^3\)
\(\Rightarrow3x+2=-\frac{2}{3}\)
\(3x=-\frac{8}{3}\)
\(x=-\frac{9}{8}\)