K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

1) Ta có : \(3n^2+5⋮n-1\)

\(\Leftrightarrow3\left(n^2-1\right)+8⋮n-1\)

\(\Leftrightarrow3\left(n-1\right)\left(n+1\right)+8⋮n-1\)

\(\Leftrightarrow8⋮n-1\)

14 tháng 2 2020

Trl : 

     Bạn kia trả lời đúng rồi nhoa !

Hok tốt

~ nhé bạn ~

1 tháng 11 2018

a) ta có: 1 -3n chia hết cho 2n +1

=> 2 - 6n chia hết cho 2n +1

=> 5 - 3 - 6n chia hết cho 2n +1

5 - 3.(1+2n) chia hết cho 2n + 1

...

bn tự làm tiếp đk r

b) ta có: 2-7n chia hết cho 2n + 5

=> 4 - 14n chia hết cho 2n + 5

=> 39 - 35 - 14n chia hết cho 2n + 5

39 - 7.(5+2n) chia hết cho 2n +5

...

c) ta có: 4n + 9 chia hết cho 3n + 1

=> 12n + 27 chia hết cho 3n + 1

12n + 4+23 chia hét cho 3n + 1

4.(3n+1) + 23 chia hết cho 3n + 1

...

1 tháng 11 2018

d) ta có: n^2 + 2n + 7 chia hết cho n+2

=> n.(n+2) + 7 chia hết cho n + 2

....

e) ta có: n^2 + n + 1 chia hết cho n + 1

=> n.(n+1) + 1 chia hết cho n + 1

...

11 tháng 11 2015

n+2 chia hết cho n+1

=>n+1+1 chia hết chi n+1

=>1 chia hết cho n+1

=>n+1=1

=>n=0

b.

2n+7 chia hết cho n+1

=>2(n+1)+5 chia hết cho n+1

=>n+1 thuộc Ư(5)

=>n +1 thuộc {1;5}

=>n thuộc {0;4}

c.2n+1 chia hết cho n-6

=>2(n-6)+13 chia hết cho n-6

=> n-6 thuộc Ư(13)

=>n-6 thuộc {1;13}

=> n thuộc {7;19}

 

22 tháng 1 2016

c) n2 + 2n + 7 chia hết cho n + 2

=> n(n + 2) + 7 chia hết cho n + 2

Mà n(n + 2) chia hết cho n + 2

=> 7 chia hết cho n + 2

=> n + 2 \(\in\){-1;1;-7;7}

=> n \(\in\){-3;-1;-9;5}

22 tháng 1 2016

a) n + 6 chia hết cho n

Mà n chia hết cho n

=> 6 chia hết cho n

=> n \(\in\){-1;1;-2;2;-3;3;-6;6}

Mà n thuộc N

=. n \(\in\){1;2;3;6}

10 tháng 1 2018

a)          \(n+1\)\(⋮\)\(n-1\)

\(\Leftrightarrow\)\(n-1+2\)\(⋮\)\(n-1\)

Ta thấy  \(n-1\)\(⋮\)\(n-1\)

nên  \(2\)\(⋮\)\(n-1\)

hay  \(n-1\)\(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Ta lập bảng sau:

\(n-1\)   \(-2\)        \(-1\)          \(1\)          \(2\)

\(n\)            \(-1\)           \(0\)           \(2\)           \(3\)

Vậy..