K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

mik nghĩ chỗ \(\dfrac{2}{x.\left(x+1\right)}\) phải là \(\dfrac{1}{x.\left(x+1\right)}\) bạn có thể vui lòng kiểm tra lại đề không Lệ Quyên

16 tháng 6 2017

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)

\(\Leftrightarrow\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2003}\)

\(\Leftrightarrow x+1=2003\Leftrightarrow x=2002\)

4 tháng 9 2015

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right):2}=\frac{2001}{2003}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{2003}:2\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}=\frac{1}{2003}\)

=> x + 1 = 2003

=> x = 2003 - 1

=> x = 2002

18 tháng 4 2023

13+16+110+...+1x(x+1):2=2001200313+16+110+...+1�(�+1):2=20012003

26+212+220+...+2x(x+1)=2001200326+212+220+...+2�(�+1)=20012003

2.(12.3+13.4+14.5+...+1x(x+1))=200120032.(12.3+13.4+14.5+...+1�(�+1))=20012003

12−13+13−14+14−15+...+1x−1x+1=20012003:212−13+13−14+14−15+...+1�−1�+1=20012003:2

12−1x+1=2001400612−1�+1=20014006

=> 1x+1=12−20014006=120031�+1=12−20014006=12003

=> x + 1 = 2003

=> x = 2003 - 1

=> x = 2002

=>\(\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{2001}{2003}\)

=>\(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2001}{4006}\)

=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)

=>\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{2001}{4006}\)

=>1/(x+1)=1/2-2001/4006=1/2003

=>x+1=2003

=>x=2002

21 tháng 6 2015

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

<=>\(\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}\cdot\frac{1}{2}=\frac{2001}{4006}\)

<=>\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

<=>\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

<=>\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)

<=>\(\frac{1}{x+1}=\frac{1}{2003}\)

<=>x+1=2003

<=>x=2002

8 tháng 6 2016

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)

\(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)

\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2001}{2003}:2\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(-\frac{1}{x+1}=\frac{2001}{4006}-\frac{1}{2}\)

\(-\frac{1}{x+1}=-\frac{1}{2003}\)

\(\Rightarrow x+1=2003\)

\(\Rightarrow x=2012\)

 

 

8 tháng 6 2016

Ta có: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+..+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2001}{2003}\)

\(\Rightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2001}{2003}\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{2003}:2\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Rightarrow\frac{2003}{4006}-\frac{1}{x+1}=\frac{2001}{4006}\)

\(\Rightarrow\frac{1}{x+1}=\frac{2003}{4006}-\frac{2001}{4006}\)

\(\Rightarrow\frac{1}{x+1}=\frac{2}{4006}=\frac{1}{2003}\)

=> x + 1 = 2003

=> x = 2002

Vậy x = 2002

Duyệt nha !!!

chúc hk tốt!!!

5 tháng 6 2017

Sorry mink mới lớp 5 nên ko thể giúp bn lm bài toán này thành thật xin lỗi 

5 tháng 6 2017

a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}+\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Dễ thấy \(\frac{1}{10}>\frac{1}{11}>\frac{1}{12}>\frac{1}{13}>\frac{1}{14}\)nên biểu thức trong ngoặc thứ hai \(\ne\)0

Do đó \(x+1=0\)\(\Rightarrow x=0-1=-1\)

b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\Leftrightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+4}{2003}=0\)

\(\Leftrightarrow\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}+\frac{1}{2003}\right)=0\)

Vì \(\frac{1}{2000}>\frac{1}{2001}>\frac{1}{2002}>\frac{1}{2003}\)nên biểu thức trong ngoặc thứ hai phải \(\ne\)0

Do đó \(x+2004=0\)\(\Rightarrow x=0-2004=-2004\)

17 tháng 6 2021

x+110+x+111+x+112=x+113+x+114x+110+x+111+x+112=x+113+x+114

x+110+x+111+x+112x+113x+114x+110+x+111+x+112−x+113−x+114

(x+1)(110+111+112113114)⇒(x+1)(110+111+112−113−114)

Vì 10<11<12<13<14 110>111>112>113>114⇒110>111>112>113>114

110+111+112113114>0⇒110+111+112−113−114>0

x+1=0⇒x+1=0

x=1

17 tháng 6 2021

 Câu 1:x+1/10 + x+1/11 = x+1/12 + x+1/13 + x+1/14.

<-> (x+1)(1/10+1/11-1/12-1/13-1/14)=0

<-> x+1=0

<-> x=-1

Câu 2:

x+4/2000+x+3/2001=x+2/2002+x

⇔x+4/2000+1+x+3/2001=x+2/2002+1+x+1/2003

⇔x+2004/2000+x+2004/2001=x+2004/2002+x+2004/2003

⇔(x+2004)/(1/2000+1/2001−1/2002−1/2003)=0

⇔x+2004=0

⇔x=-2004

8 tháng 6 2016

13 +16 +110 +....+1x(x+1):2 =20012003 

26 +212 +220 +....+2x(x+1) =20012003 

2(12.3 +13.4 +14.5 +....+1x(x+1) )=20012003 

12 −13 +13 −14 +14 −15 +....+1x −1x+1 =20012003 :2=20014006 

12 −1x+1 =20014006 

1x+1 =12 −20014006 =12003 

=> x+1 = 2003

=> x = 2003 - 1

=> x = 2002

 Xin 1 tích đúng 

8 tháng 6 2016

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+.....+\frac{2}{x.\left(x+1\right)}=\frac{2001}{2003}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)

\(\Rightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2001}{2003}\)

\(\Rightarrow\frac{x-1}{x+1}=\frac{2001}{2003}\)

\(\Rightarrow2x=4004\)

\(\Rightarrow x=2002\)

22 tháng 6 2018

Hỏi đáp Toán

3 tháng 9 2016

a) <=>(x+1)(1/10 + 1/11+1/12) =(x+1)(1/13 + 1/14) 
<=>(x+1)(1/10 + 1/11+1/12 -1/13 -1/14)=0 
<=> x+1=0(vì biểu thức 1/10 + 1/11 +1/12-1/13-1/14#0) 
<=>x= -1

b) (x+4)/2000 + (x+3)/2001 = (x+2)/2002 + (x+1)/2003 
<=> (x+4)/2000 + 1 + (x+3)/2001 +1 = (x+2)/2002 + 1 + (x+1)/2003 + 1 (thêm 2 vào mỗi vế ) 
<=> (x+4+2000)/2000 + (x+3+2001)/2001 = (x+2+2002)/2002 + (x+1+2003)/2003 
<=> (x+2004)/2000 + (x+2004)/2001 - (x+2004)/2002 - (x+2004)/2003 = 0 ( chuyển vế ) 
<=> (x+2004)(1/2000 + 1/2001 - 1/2002 - 1/2003) = 0 ( nhóm hạng tử x + 2004) 
vậy biể thức trên bằng 0 tại x+2004 = 0 hoặc 1/2000 + 1/2001 - 1/2002 - 1/2003 = 0 
mà ta dễ thấy 1/2000 + 1/2001 - 1/2002 - 1/2003 khác 0 
nên biểu thức trên bằng 0 tại x+2004=0 
=> x = -2004 
vậy S = { -2004}

3 tháng 9 2016

a/ \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Mà: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\Rightarrow x+1=0\Rightarrow x=-1\)