Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-2x-y+3y-1\)
\(B=-2x^2+3y^2-5x+y+3\)
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)+3y^2+\left(-2x-5x\right)+\left(-y+3y+y\right)+3-1\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)-3y^2+\left(-2x+5x\right)+\left(-y+3y-y\right)-1-3\)
\(=3x^2-3y+3x+y-4\)
b) tại x=1 ; x=-2 ta có:
\(A=1^2-2.1-\left(-2\right)+3.\left(-2\right)-1\)
\(A=1-2+2-6-1=-6\)
Vậy -6 là giá trị của đa thức A tại x=1 y=-2
a) \(A+B=\left(x^2-2x-y+3y-1\right)+\left(-2x^2+3y^2-5x+y+3\right)\)
\(=-x^2+3y^2-7x+3y+2\)
\(A-B=\left(x^2-2x-y+3y-1\right)-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=3x^2-3y^2+3x+2y-4\)
b) \(A\left(1;-2\right)=1^2-2\cdot1-\left(-2\right)+3\cdot\left(-2\right)-1\)
\(=1-2+2-6-1\)
\(=-6\)
\(a,\left(\dfrac{2}{3}\right)^x=\left(\dfrac{4}{9}\right)^4.\)
\(\left(\dfrac{2}{3}\right)^x=\left[\left(\dfrac{2}{3}\right)^2\right]^4.\)
\(\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^8\Rightarrow x=8.\)
Vậy.....
\(b,\left(2x-1\right)^2=25.\)
\(\left(2x-1\right)^2=\left(\pm5\right)^2.\)
\(\Rightarrow\left(2x-1\right)=\pm5.\)
+) Xét \(2x-1=5\), ta có:
\(2x-1=5.\)
\(\Rightarrow2x=6.\)
\(\Rightarrow x=3.\)
+) Xét \(2x-1=-5\), ta có:
\(2x-1=-5.\)
\(\Rightarrow2x=-4.\)
\(\Rightarrow x=-2.\)
Vậy.....
a) x^2 = 9 => x=3 hoặc x = -3
b) x^2 = 5 => \(x=\sqrt{5}\)
c) x^2 - 4 = 0
=> x^2 = 4 => x = 2 hoặc x = -2
d) x^2 + 1 = 82
=> x^2 = 81 => x = 9 hoặc x = -9
e) (2x)^2 = 6
=> 4 . x^2 = 6
=> x^2 = 3/2
=> \(x=\sqrt{\frac{3}{2}}\)
f) (x-1)^2 = 9
=> x-1 = 3 hoặc x - 1 = -3
=> x = 4 hoặc -2
g) (2x+3)^2 = 25
=> 2x + 3 = 5 hoặc 2x + 3 = -5
=> x = 1 hoặc x = -4
Ta có:
a, \(x^2=9\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
b, \(x^2=5\Rightarrow\orbr{\begin{cases}x=2,5\\x=-2.5\end{cases}}\)
Các câu còn lại tương tự nhé bn