Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^x.5^{x+1}.5^{x+2}=5^{x+x+1+x+2}=5^{3\left(x+1\right)}\le5^{18}\)
\(\Rightarrow3\left(x+1\right)\le18\Rightarrow x+1\le6\Rightarrow x\le5\)
Tính:
(-2)2.3 -(110+8):(-3)2
=4.3-(1+8):9
=12-9:9
=12-1
=11
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
- Vì :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{n^2}< \frac{1}{n\left(n-1\right)}\)
Cộng vế với vế , ta suy ra
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{n-1}-\frac{1}{n}\)
= \(1-\frac{1}{n}< 1\)
=> A<1 ( đpcm )
Ta có:\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)=\(\frac{1}{1}-\frac{1}{n}\)<1 => \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)
\(S=6^2\left(1^2+2^2+3^2+...+10^2\right)=36.385=13860\)
\(A=1+2^2+2^3+...+2^{2018}\)
\(2A=2+2^2+...+2^{2019}\)
\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)
\(A=2^{2019}-1\)
\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)
\(\Rightarrow A+1\)là một lũy thừa
đpcm
a) 2^n=128/4=32=2^5\(\Rightarrow\)n=5
b)3^n+1 :9=81\(\Rightarrow\)3^n.3 :9=81\(\Rightarrow\)3^n:3=81\(\Rightarrow\)3^n =243=3^5\(\Rightarrow\)n=5
c) 15^n:15=(3^2)^2:3^4=3^4:3^4=1\(\Rightarrow\)15^n=15=15^1\(\Rightarrow\)n=1
a, <=> 2^n = 128/4 = 32
<=> 2^n = 2^5
<=> n =5
b,<=> 3^(n+1) = 81.9= 729
<=> 3^(n+1) = 3^6
<=> n+1 = 6 <=> n =5
c, <=> 15^(n-1) = 1
<=> 15^(n-1) = 15^ 0
<=> n-1 = 0 <=> n =1
B = 1 + 4 + 42 +...+ 4200 + 4201
=> 4B = 4 + 42 +43 +...+ 4201 + 4202
=> 4B-B = 4202 - 1
3B = 4202 -1
\(\Rightarrow B=\frac{4^{202}-1}{3}\)
4B = 4 + 4^2 + 4^3 + ... + 4^202
4B - B = ( 4 + 4^2 + 4^3 + ... + 4^202 ) - ( 1 + 4 + 4^2 + ... + 4^201 )
3B = 4^202 - 1
B = \(\frac{4^{202}-1}{3}\)
\((\frac{1}{2})\)10 : \((\frac{1}{2})^4 \)
=(\(\frac{1}{2}\))10-4
= \(=(\frac{1}{2})^6\)