Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}a^2_2=a_1a_3\\a^2_3=a_2a_4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}\\\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\end{matrix}\right.\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}\)
Đặt: \(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=t\)
\(\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}.\dfrac{a_3}{a_4}=t.t.t=\dfrac{a_1}{a_4}=t^3\left(1\right)\)
Ta có:\(\left\{{}\begin{matrix}\dfrac{a^3_1}{a^3_2}=t^3\\\dfrac{8a^3_2}{8a^3_3}=t^3\\\dfrac{125a^3_3}{125a^3_4}=t^3\end{matrix}\right.\) \(\Rightarrow\dfrac{a^3_1}{a^3_2}=\dfrac{8a^3_2}{8a^3_3}=\dfrac{125a^3_3}{125a^3_4}=\dfrac{a^3_1+8a^3_2+125a^3_3}{a^3_2+8a^3_3+125a^3_4}=t^3\)
Ta có đpcm
Từ đâu bạn có dòng thứ 5? Mà dòng thứ 5 liên quan gì đến dòng thứ 6? Bài này sai nhé,mk sẽ del
a) Xét △ABD và △EBD có:
ˆBAD=ˆBED=90oBAD^=BED^=90o
BD: cạnh chung
ˆABD=ˆEBDABD^=EBD^
⇒△ABD = △EBD (cạnh huyền - góc nhọn)⇒△ABD = △EBD (cạnh huyền - góc nhọn)
b) △ABD = △EBD
⇒BA=BE⇒BA=BE (2 cạnh tương ứng)
Xét △ABE có: ˆB=60oB^=60o; BA = BE
⇒⇒ △ABE đều
c) Xét △ABC vuông tại A có: ˆABC+ˆC=90oABC^+C^=90o(định lí tổng 3 góc của 1 tam giác vuông)
⇒60o+ˆC=90o⇒ˆC=30o⇒60o+C^=90o⇒C^=30o
Xét △ABC vuông tại A có: ˆC=30oC^=30o
⇒AB=12BC⇒AB=12BC
⇒BC=5.2=10(cm)
(Không biết là dấu // của bạn là gì có phải | giá trị tuyệt đối?)
1, Không có giá trị lớn nhấn vì số mũ dương. Giá trị nhỏ nhất là 2019. x=1; y=2
2, Không có giá trị lớn nhất), Giá trị nhỏ nhất tại: (vì giá trị tuyệt đối luôn dương)
https://hotavn.ga/horobot/horobotmath.php?s=Tra+t%C6%B0%CC%80&val=min(%7Cx%2B3%7C%2B%7Cx-y%2B4%7C-10)
3, C <= 2000 vì (giá trị tuyệt đối luôn dương mà đằng trước dấu giá trị tuyệt đối là - nên luôn âm)
=>
4, vì số mũ dương mà ta lại có 2 ẩn trong đó một ẩn luôn dương và một ẩn luôn âm nên không có giá trị lớn nhất và nhỏ nhất
1, Ta có: (x - 1)2000 \(\ge\)0 \(\forall\)x
|y - 2|2000 \(\ge\)0 \(\forall\)y
=> (x - 1)2000 + |y - 2|2000 + 2019 \(\ge\)2019 \(\forall\)x, y
hay A \(\ge\)2019 \(\forall\)x,y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy Amin = 2019 tại x = 1 và y = 2
2) Ta có: |x + 3| \(\ge\)0 \(\forall\)x
|x - y + 4| \(\ge\) 0 \(\forall\)x, y
=> |x + 3| + |x - y + 4| - 10 \(\ge\)-10 \(\forall\)x,y
hay B \(\ge\)-10 \(\forall\)x,y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}x+3=0\\x-y+4=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\x-y=-4\end{cases}}\) <=> \(\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
vậy Bmin = -10 tại x = -3 và y = 1
Ta có \(\left|7x-5y\right|\ge0\) với \(\forall x;y\)
\(\left|2z-3x\right|\ge0\)với \(\forall x;z\)
\(\left|xy+yz+zx-2000\right|\ge0\)với \(\forall x;y;z\)
=>\(\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge0\) với \(\forall x;y;z\)
Mà A=0 \(\Leftrightarrow\left|7x-5y\right|=\left|2z-3x\right|=\left|xy+yz+zx-2000\right|=0\)
Lại có: \(\left|7x-5y\right|=0\Rightarrow7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\)
Tương tự, ta cx có: \(\left|2z-3x\right|=\frac{x}{2}=\frac{z}{3}\)
Và \(\left|xy+yz+zx-2000\right|=0\Rightarrow xy+yz+zx-2000=0\Rightarrow xy+yz+zx=2000\)
Từ đó ta tìm đc: \(\orbr{\begin{cases}x=20;y=28;z=30\\x=-20;y=-28;z=-30\end{cases}}\)
\(A\ge0\)mà A=0 <=>(x;y;z)\(\in\left\{\left(20;28;30\right),\left(-20;-28;-30\right)\right\}\)
Vậy GTNN của A=0 <=> (x;y;z)\(\in\left\{\left(20;28;30\right)\left(-20;-28;-30\right)\right\}\)
Hôm thứ 6 tuần trc cô giáo t vừa cho cái đề này để ôn thi, hình như cô in trên mạng hay sao ý ạ, cô giảng cho mình như nà, mik làm tắt( có gì ko hiểu ib nha), cồn nếu ko thì lên mạng tìm nha~
125a+275a+600a=2000
=>a.(125+275+600)=2000
=>1000a=2000
=>a=2
=> (125+275+600).a = 2000
=> 1000.a = 2000
=> a = 2