Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
\(2A=2+2^2+2^3+2^4+...+2^{101}\)
\(A=2^{101}-1\)
b, Đặt \(B=5+5^3+5^5+...+5^{99}\)
\(25B=5^3+5^5+5^7+...+5^{101}\)
\(24B=5^{101}-5\)
\(B=\frac{5^{101}-5}{24}\)
Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
=>\(2A=2+2^2+2^3+...+2^{101}\)
=>\(2A-A=A=\text{}\text{}2+2^2+2^3+...+2^{101}-1-2-2^2-...-2^{100}=2^{101}-1\)
\(a,\)Đặt \(A=1+2+2^2+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2+2^2+...+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...2^{100}\right)\)
\(\Rightarrow A=2^{101}-1\)
\(b,\)Đặt \(B=5+5^3+5^5+...+5^{97}+5^{99}\)
\(\Rightarrow5^2B=5^3+5^5+...+5^{99}+5^{101}\)
\(\Rightarrow25B-B=\left(5^3+5^5+...+5^{99}+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)
\(\Rightarrow24B=5^{101}-5\)
\(\Rightarrow B=\frac{5^{101}-5}{24}\)
a, (231+69)*(28+72)
=300*100
=30000
c,đặt A=1+2+2^2+2^3+......+2^99+2^100
2A=2+2^2+2^3+2^4+......+2^100+2^101
2A-A=2^101-1
A=2^101-1/2
d,đặt S=5+5^3+5^5+.......+5^97+5^99
5^2S=5^3+5^5+5^7+.....+5^99+5^101
25S-S=5^101-5
24S=5^101-5
S=5^101-5/24
a) S=(1-2)^2+(3-4)^3+......+(99-100)^99
=(-1)^2+(-1)^3+......+(-1)^99
=1+(-1)+....+(-1)
=[1+(-1)]+[1+(-1)]+.......+[1+(-1)]
=0+0+.....+0=0
1^2-2^2+3^2-4^2+.......+99^2-100^2
=(1+2)(-1)+(3+4)(-1)+......+(99+100)(-1)
=(-1)(1+2+3+4+......+99+100)=(-1).101.100:2=-5050
\(A=1+2+2^2+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1\)
\(B=5+5^3+...+5^{99}\)
\(25B=5^3+5^5+...+5^{101}\)
\(25B-B=\left(5^3+5^5+...+5^{101}\right)-\left(5+5^3+...+5^{99}\right)\)
\(24B=5^{101}-5\)
\(B=\frac{5^{101}-5}{25}=\frac{5^{100}-1}{5}\)
\(A=1+2+2^2+....+2^{100}\)
\(\Leftrightarrow2A=2+2^2+.....+2^{100}+2^{101}\)
\(\Leftrightarrow2A-A=\left(2+2^2+....+2^{101}\right)-\left(1+2+....+2^{100}\right)\)
\(\Leftrightarrow A=2^{101}-1\)
\(B=5+5^3+.....+5^{97}+5^{99}\)
\(\Leftrightarrow5^2B=5^3+5^5+....+5^{99}+5^{101}\)
\(\Leftrightarrow25B-B=\left(5^3+5^5+....+5^{101}\right)-\left(5+5^3+...+5^{97}\right)\)
\(\Leftrightarrow24B=5^{101}-5\)
\(\Leftrightarrow B=\frac{5^{101}-5}{24}\)