Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+....+\frac{3}{2015.2016}\)
\(\Rightarrow\frac{1}{3}.S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2015.2016}\)
\(\Rightarrow\frac{1}{3}.S=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+......+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
\(\Rightarrow\frac{1}{3}.S=\frac{1}{1}-\frac{1}{2016}\)
\(\Rightarrow\frac{1}{3}.S=\frac{2015}{2016}\)
\(\Rightarrow S=\frac{2015}{672}\)
Vậy: \(\Rightarrow S=\frac{2015}{672}\)
Bạn giải giúp mk câu mk đăng tầm 5 phút nha!
3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 2015.2016.2017
3A=2015.2016.2017
A=\(\frac{2015.2016.2017}{3}=.........................\)
A=1.2+2.3+3.4+......+2015.2016
=>3A=1.2.3+2.3.3+3.4.3+....+2015.2016.3
=>3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+2015.2016.(2017-2014)
=>3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+.....+2015.2016.2017-2014.2015.2016
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+......+2015.2016.2017-2014.2015.2016
=>3A=2015.2016.2017
=>\(A=\frac{2015.2016.2017}{3}=2731179360\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)
\(A=\frac{1}{1}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A=1-\frac{1}{2017}\)
\(\Rightarrow A=\frac{2016}{2017}\)
11.2+12.3+13.4+14.5+...+12015.2016+12016.2017
=1−12+12−13+13−14+14−15+...+12015−12016+12016−12017
=1−12017=20162017
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2106}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
\(A=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
\(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2014.2016}=\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\right)\)
=> \(B=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{1008}\right)=\frac{1}{4}.\frac{1007}{1008}\)
=> \(B=\frac{1007}{4032}\)
mik ngại viết lắm nên giúp bn bằng cách này bạn có k ko
Câu hỏi của Vu Linh Nhi - Toán lớp 6 - Học toán với OnlineMath
\(1.2+2.3+3.4+...+2015.2016\)
\(=\frac{1}{3}.\left[1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2015.2016.\left(2017-2014\right)\right]\)
\(=\frac{1}{3}.\left(1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+2015.2016.2017-2014.2015.2016\right)\)
\(=\frac{1}{3}.\left[\left(1.2.3+2.3.4+3.4.5+...+2015.2016.2017\right)-\left(0.1.2+1.2.3+2.3.4+...+2014.2015.2016\right)\right]\)
\(=\frac{1}{3}.\left(2015.2016.2017-0.1.2\right)\)
\(=\frac{1}{3}.2015.2016.2017\)
\(=2015.672.2017\)
\(=2,731,179,360\)
Dấu phẩy chỉ để ngăn cách cho dễ nhìn thui nha
Ủng hộ mk nha ^-^