Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
A = ....
Giúp mk nha ! đúng mk sẽ tick cho ^_^ !
A =1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
A = 64/128 + 32/128 + 16/128 + 8/128 + 4/128 + 2/128 + 1/128
A = 217/218 tick đúng nha
\(A=\frac{1}{2}+\frac{1}{4}+...+\frac{1}{128}\)
\(\frac{1}{2}A=\frac{1}{4}+\frac{1}{8}+...+\frac{1}{256}\)
\(A-\frac{1}{2}A=\left(\frac{1}{4}-\frac{1}{4}\right)+...+\left(\frac{1}{128}-\frac{1}{128}\right)+\left(\frac{1}{2}-\frac{1}{256}\right)\)
\(A=\left(\frac{1}{2}-\frac{1}{256}\right)\times2=1-\frac{1}{128}=\frac{127}{128}\)
Đặt tổng trên là A . Ta có:
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}\right)\)
\(A=1-\frac{1}{1024}\)
\(A=\frac{1023}{1024}\)
Bạn tham khảo theo đường link này nhé có 1 bài tương tự đó : https://olm.vn/hoi-dap/question/1042256.html
Ta có:
Để chia 3 dư 0 thì: thương x 3 (vì số chia là 3) + số dư (0)
Để chia 3 dư 1 thì: thương x 3 (vì số chia là 3) + số dư (1)
Thương nhỏ nhất có thể là 1 (và luôn luôn là thế@@@)
Ta có 1 x 3 + 1 = 4
Áp dụng công thức trên làm tương tự
mik nhé!
\(\frac{x+1}{3}\cdot\frac{x+2}{4}\cdot\frac{x+3}{5}\cdot\frac{x+4}{6}\)Trong khi đó x là số chia hết cho 3, 4, 5, 6.
nếu không có dư thì x là : 3 x 4 x 5 x 6 = 360
\(\frac{361}{3}\cdot\frac{362}{4}\cdot\frac{363}{5}\cdot\frac{364}{6}\)
làm theo cách của mình =))
Ý a) mình chép y như trong vở bài tập trắc nghiệm và tự luận TOÁN 5 tập 2 ko thiếu một chữ luôn đóa !!!
\(a.\frac{19}{5}\cdot\frac{4}{7}+\frac{3}{7}\cdot\frac{19}{5}-\frac{4}{5}\)
\(=\frac{19}{5}\cdot\left(\frac{4}{7}+\frac{3}{7}\right)-\frac{4}{5}\)
\(=\frac{19}{5}\cdot1-\frac{4}{5}\)
\(=\frac{19}{5}-\frac{4}{5}=\frac{15}{5}=3\)
\(b.2\frac{2}{7}\cdot5\frac{2}{5}+\frac{16}{7}\cdot1\frac{3}{5}+\frac{1}{2}\)
\(=\frac{16}{7}\cdot\frac{27}{5}+\frac{16}{7}\cdot\frac{8}{5}+\frac{1}{2}\)
\(=\frac{16}{7}\cdot\left(\frac{27}{5}+\frac{8}{5}\right)+\frac{1}{2}\)
\(=\frac{16}{7}\cdot7+\frac{1}{2}\)
\(=16+\frac{1}{2}=\frac{33}{2}\)
\(c.\frac{3}{7}\cdot3\frac{3}{4}-\frac{3}{7}\cdot\frac{5}{4}-\frac{1}{4}\)
\(=\frac{3}{7}\cdot\frac{15}{4}-\frac{3}{7}\cdot\frac{5}{4}-\frac{1}{4}\)
\(=\frac{3}{7}\cdot\left(\frac{15}{4}-\frac{5}{4}\right)-\frac{1}{4}\)
\(=\frac{3}{7}\cdot\frac{5}{2}-\frac{1}{4}\)
\(=\frac{15}{14}-\frac{1}{4}=\frac{23}{28}\)
Chú ý: \(\cdot:\times\)
\(\text{Đặt }S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}.\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(\Rightarrow2S-S=S=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)
\(\Rightarrow S=1-\frac{1}{2048}=\frac{2047}{2048}\)