Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính giá trị :
- A= (1/1x2 + 1/3x4 + 1/5x6 +...+ 1/399x400) : (1/201x400 + 1/202x399 +...+ 1/300x301 )
Tính giá trị :
- A= (1/1x2 + 1/3x4 + 1/5x6 +...+ 1/399x400) : (1/201x400 + 1/202x399 +...+ 1/300x301 )
\(A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(=\left(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}\right)+\left(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}\right)\)
Ta có:
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}>\dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}>\dfrac{1}{100}+\dfrac{1}{100}+...+\dfrac{1}{100}=\dfrac{25}{100}=\dfrac{1}{4}\)
\(\Rightarrow A>\dfrac{1}{3}+\dfrac{1}{4}=\dfrac{7}{12}\) (1)
Lại có:
\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{75}< \dfrac{1}{50}+\dfrac{1}{50}+...+\dfrac{1}{50}=\dfrac{25}{50}=\dfrac{1}{2}\)
\(\dfrac{1}{76}+\dfrac{1}{77}+...+\dfrac{1}{100}< \dfrac{1}{75}+\dfrac{1}{75}+...+\dfrac{1}{75}=\dfrac{25}{75}=\dfrac{1}{3}\)
\(\Rightarrow A< \dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\) (2)
Từ (1) và (2) suy ra \(\dfrac{7}{12}< A< \dfrac{5}{6}\)
Cho A=\(\frac{1}{1x2}+\frac{1}{3x4}+\frac{1}{5x6}+....+\frac{1}{99x100}\)
Chứng minh rằng: 7/12<A<5/6
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Do \(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{100}\Rightarrow A=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>25\cdot\frac{1}{80}+25\cdot\frac{1}{100}=\frac{7}{12}\)
và \(A<10\cdot\frac{1}{50}+10\cdot\frac{1}{60}+...+10\cdot\frac{1}{90}=\frac{1}{5}+\frac{1}{6}+...+\frac{1}{9}=\frac{1879}{2520}<\frac{5}{6}\)
Vậy 7/12<A<5/6
các bn ơi giải ra giúp mìnk cái trong ngày hôm nay và nngày mai
mìnk đang cần gấp