Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây không phải giới hạn dạng vô định mà chỉ là giới hạn bình thường
\(=\frac{\sqrt[3]{19}-2\sqrt{2}}{0}=-\infty\)
2(sin2xcos\(\frac{9\pi}{4}\) + sin\(\frac{9\pi}{4}\)cosx) + 7\(\sqrt{2}\)sinx + \(\sqrt{2}\)( sinx cos\(\frac{11\pi}{2}\)+sin\(\frac{11\pi}{2}\)cosx ) =4\(\sqrt{2}\)
\(\sqrt{2}\)sin2x + \(\sqrt{2}\)cosx +7\(\sqrt{2}\)sinx -\(\sqrt{2}\)cosx =4\(\sqrt{2}\)
2\(\sqrt{2}\)sinxcosx+7\(\sqrt{2}\)sinx - 4\(\sqrt{2}\) =0
PHẦN CÒN LẠI C TỰ LM NỐT NHÉ
\(a=\lim\limits_{x\rightarrow a}\frac{\left(\sqrt{x}-\sqrt{a}\right)\left(x+\sqrt{ax}+a\right)}{\sqrt{x}-\sqrt{a}}=\lim\limits_{x\rightarrow a}\left(x+\sqrt{ax}+a\right)=3a\)
\(b=\lim\limits_{x\rightarrow1}\frac{x^{\frac{1}{n}}-1}{x^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow1}\frac{\frac{1}{n}x^{\frac{1-n}{n}}}{\frac{1}{m}x^{\frac{1-m}{m}}}=\frac{\frac{1}{n}}{\frac{1}{m}}=\frac{m}{n}\)
Ta có:
\(\lim\limits_{x\rightarrow1}\frac{1-\sqrt[n]{x}}{1-x}=\lim\limits_{x\rightarrow1}\frac{1-x^{\frac{1}{n}}}{1-x}=\lim\limits_{x\rightarrow1}\frac{-\frac{1}{n}x^{\frac{1-n}{n}}}{-1}=\frac{1}{n}\)
\(\Rightarrow c=\lim\limits_{x\rightarrow1}\frac{\left(1-\sqrt{x}\right)}{1-x}.\frac{\left(1-\sqrt[3]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[4]{x}\right)}{\left(1-x\right)}.\frac{\left(1-\sqrt[5]{x}\right)}{\left(1-x\right)}=\frac{1}{2}.\frac{1}{3}.\frac{1}{4}.\frac{1}{5}=\frac{1}{120}\)
\(d=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{1}{\sqrt{x}}}}{\sqrt{1+\sqrt{\frac{1}{x}+\frac{1}{x\sqrt{x}}}}+1}=\frac{1}{2}\)
\(e=\lim\limits_{x\rightarrow0}\frac{\sqrt{1+x}-1+1-\sqrt[3]{1+x}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{x}{\sqrt{1+x}+1}+\frac{x}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\frac{1}{\sqrt{1+x}+1}+\frac{1}{1+\sqrt[3]{1+x}+\sqrt[3]{\left(1+x\right)^2}}\right)=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
\(f=\lim\limits_{x\rightarrow2}\frac{\sqrt[3]{8x+11}-3+3-\sqrt{x+7}}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\frac{\frac{8\left(x-2\right)}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{x-2}{3+\sqrt{x+7}}}{\left(x-1\right)\left(x-2\right)}\)
\(=\lim\limits_{x\rightarrow2}\frac{\frac{8}{\sqrt[3]{\left(8x+11\right)^2}+3\sqrt[3]{8x+11}+9}-\frac{1}{3+\sqrt{x+7}}}{x-1}=\frac{8}{27}-\frac{1}{6}=\frac{7}{54}\)
\(g=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{3x-2}-1+1-\sqrt{2x-1}}{\left(x-1\right)\left(x^2+x+1\right)}=\lim\limits_{x\rightarrow1}\frac{\frac{3\left(x-1\right)}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2\left(x-1\right)}{1+\sqrt{2x-1}}}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\lim\limits_{x\rightarrow1}\frac{\frac{3}{\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1}-\frac{2}{1+\sqrt{2x-1}}}{x^2+x+1}=0\)
\(h=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+9}+\sqrt[3]{2x-6}}{x^3+1}=\frac{\sqrt[3]{10}-\sqrt[3]{4}}{2}\)
\(\left(\frac{1}{2}+\frac{1}{3}.x^{\frac{1}{2}}\right)^{11}\) có SHTQ: \(C_{11}^k\left(\frac{1}{2}\right)^k.\left(\frac{1}{3}\right)^{11-k}.x^{\frac{11-k}{2}}\)
Hệ số của số hạng: \(H_k=C_{11}^k\left(\frac{1}{2}\right)^k\left(\frac{1}{3}\right)^{11-k}\)
Hệ số là lớn nhất khi và chỉ khi \(\left\{{}\begin{matrix}H_k\ge H_{k+1}\\H_k\ge H_{k-1}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}C_{11}^k\left(\frac{1}{2}\right)^k\left(\frac{1}{3}\right)^{11-k}\ge C_{11}^{k+1}\left(\frac{1}{2}\right)^{k+1}\left(\frac{1}{3}\right)^{10-k}\\C_{11}^k\left(\frac{1}{2}\right)^k\left(\frac{1}{3}\right)^{11-k}\ge C_{11}^{k-1}\left(\frac{1}{2}\right)^{k-1}\left(\frac{1}{3}\right)^{12-k}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{1}{3\left(11-k\right)}\ge\frac{1}{2\left(k+1\right)}\\\frac{1}{2k}\ge\frac{1}{3\left(12-k\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2k+2\ge33-3k\\36-3k\ge2k\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5k\ge31\\5k\le36\end{matrix}\right.\) \(\Rightarrow k=7\)
Vậy hệ số lớn nhất là: \(C_{11}^7\left(\frac{1}{2}\right)^7\left(\frac{1}{3}\right)^4\)
\(\lim\limits_{x\rightarrow0}\frac{2\sqrt{1+x}-2+2-\sqrt[3]{8-x}}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{2x}{\sqrt{1+x}+1}+\frac{x}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}}{x}\)
\(=\lim\limits_{x\rightarrow0}\left(\frac{2}{\sqrt{1+x}+1}+\frac{1}{4+2\sqrt[3]{8-x}+\sqrt[3]{\left(8-x\right)^2}}\right)=\frac{2}{2}+\frac{1}{4+4+4}=\frac{13}{12}\)
ai sai