Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(A=1-\frac{1}{2^{2016}}< 1\)
\(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\\ =\dfrac{1}{\dfrac{3\cdot4}{2}}+\dfrac{1}{\dfrac{4\cdot5}{2}}+...+\dfrac{1}{\dfrac{59\cdot60}{2}}\\ =\dfrac{2}{3\cdot4}+\dfrac{2}{4\cdot5}+...+\dfrac{2}{59\cdot60}\\ =2\left(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\right)\\ =2\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\right)\\ =2\cdot\dfrac{19}{60}\\ =\dfrac{38}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)
Có A=1+ 1/2+1/3+... +1/2^10-1
<=> 2-1+1-1/2+1/2-1/3+...- 1/2^10-1
<=> 2-1/2^10-1
Mà 1/2^10-1 < 1 => 2-1/2^10-1 <2
=> A<10
\(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{99}\right).\)
\(P=\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right)....\left(\frac{99}{99}-\frac{1}{99}\right)\)
\(P=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{98}{99}\)
\(P=\frac{1.2.3.4...98}{2.3.4....99}\)
Tới bước này cậu rút hết thì ta sẽ còn
\(P=\frac{1}{99}\)
Vậy \(P=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{99}\right)=\frac{1}{99}\)
\(a\left(\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right).y=\frac{1}{3}\)
\(\left(\frac{1}{2}-\frac{1}{10}\right).y=\frac{1}{3}\)
\(\frac{2}{5}.y=\frac{1}{3}\)
\(y=\frac{1}{3}:\frac{2}{5}\)
\(y=\frac{5}{6}\)
\(b,\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(\frac{10}{11}.y=\frac{2}{3}\)
\(y=\frac{2}{3}:\frac{10}{11}\)
\(y=\frac{22}{30}\)