K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

Gọi A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{19}{20}\)

\(\Rightarrow\) A = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\)

\(\Rightarrow\) A = 1 - \(\dfrac{1}{x+1}\)

\(\Rightarrow\) 1 - \(\dfrac{1}{x+1}\) = \(\dfrac{19}{20}\)

\(\Rightarrow1-\dfrac{19}{20}=\dfrac{1}{x+1}\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{20}\)

\(\Rightarrow\) x + 1 = 20\(\Rightarrow\) x=19

9 tháng 3 2017

\(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)\(\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\);.....; \(\frac{1}{x.\left(x+1\right)}=\frac{1}{x}-\frac{1}{x+1}\)

=> \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=1-\frac{1}{x+1}=\frac{x}{x+1}\)

=> \(\frac{x}{x+1}=\frac{19}{20}\)=> 20x=19x+19 => x=19

ĐS: x=19

9 tháng 3 2017

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{x\times\left(x+1\right)}=\frac{19}{20}\)\(\frac{19}{20}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{20}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{19}{20}\)

\(\Rightarrow\frac{x}{x+1}=\frac{19}{20}\)

\(\Rightarrow20x=19x+19\)\(\Rightarrow x=19\)

Vậy \(x=19\)

30 tháng 5 2017

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{20}{21}\)

\(1-\dfrac{1}{x+1}\) \(=\dfrac{20}{21}\)

\(\dfrac{1}{x+1}\) \(=\) \(\dfrac{1}{21}\)

\(=>x+1=21\)

\(x=21-1\)

\(x=20\)

30 tháng 5 2017

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{x.\left(x+1\right)}=\dfrac{20}{21}\)

\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{20}{21}\)

\(1-\dfrac{1}{x+1}=\dfrac{20}{21}\)

\(\Rightarrow\dfrac{1}{x+1}=\dfrac{20}{21}\)

\(\Leftrightarrow x+1=21\)

\(x=21-1\)

\(x=20\)

Vậy \(x=20\)

27 tháng 3 2017

Bài 2:

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=1-\dfrac{2016}{2017}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2017}\)

\(\Leftrightarrow x+1=2017\Leftrightarrow x=2016\)

Vậy \(x=2016\)

25 tháng 12 2018

2.x=2016

4 tháng 2 2018

Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3

=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3

=>1-1/x+1=2/3

=>1/x+1=1/3

=>3=x+1

=>x=2

4 tháng 2 2018

Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)

=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)

=>\(1-\frac{1}{x+1}=\frac{2}{3}\)

=>\(\frac{1}{x+1}=1-\frac{2}{3}\)

=>\(\frac{1}{x+1}=\frac{1}{3}\)

=>\(x+1=3\)

=>\(x=2\)

18 tháng 7 2018

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=201\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=201\)

\(1-\frac{1}{x+1}=201\)

\(\frac{1}{x+1}=1-201\)

\(\frac{1}{x+1}=-200\)

\(\Rightarrow x+1=-\frac{1}{200}\)

\(x=-\frac{1}{200}-1\)

\(x=-\frac{201}{200}\)

Vậy \(x=-\frac{201}{200}\)

6 tháng 8 2016

1/1.2 +1/2.3 +...+ 1/x(x+1) = 2015/2016

<=> 1-1/2 + 1/2 - 1/3 + ... + 1/x - 1/x+1 = 2015/2016

<=> 1 - 1/x+1 = 2015/2016

<=> 1/x+1 = 1/2016

<=> x + 1 = 2016

<=> x = 2015

6 tháng 8 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Leftrightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2016}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{2015}{2016}\)

 \(\Leftrightarrow\frac{1}{x+1}=1-\frac{2015}{2016}=\frac{1}{2016}\)

\(\Leftrightarrow x+1=2016\Rightarrow x=2015\)

20 tháng 6 2024

khó vậy

 

12 tháng 6 2018

Đug r pn

có cần chi tiết hơn k

12 tháng 6 2018

\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}\right)x=\frac{49}{50}\)

\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)x=\frac{49}{50}\)

\(\left(1-\frac{1}{50}\right)x=\frac{49}{50}\)

\(\frac{49}{50}x=\frac{49}{50}\)

\(x=\frac{\frac{49}{50}}{\frac{49}{50}}\)

\(x=1\)

Vậy \(x=1\)