Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
11+112+113+.......+118
=(11+112)+(113+114)+(115+116)+(117+118)
=(11+11.11)+(113+113.11)+(115+115.11)+(117+117.11)
=11.(1+11)+113.(11+1)+115.(1+11)+117.(1+11)
=11.12+113.12+115.12+117.12
=(11+113+115+117).12 chia hết cho 12
=>đpcm
\(11+11^2+11^3+11^4+11^5+11^6+11^7+11^8\)
\(=11\left(1+11\right)+11^3\left(1+11\right)+11^5\left(1+11\right)+11^7\left(1+11\right)\)
\(=\left(11+11^3+11^5+11^7\right).12⋮12\)
Vậy ...
Đặt A=\(11+11^2+11^3+....+11^7+11^8\)
\(\Leftrightarrow A=\left(11+11^2\right)+\left(11^3+11^4\right)+...+\left(11^7+11^8\right)\)
\(\Leftrightarrow A=11\left(1+11\right)+11^3\left(1+11\right)+....+11^7\left(1+11\right)\)
\(\Leftrightarrow A=11\cdot12+11^3\cdot12+...+11^7\cdot12\)
\(\Leftrightarrow A=12\left(11+11^3+....+11^7\right)\)
=> A chia hết cho 12 (đpcm)
Ta có 11A= 11^10+11^9+...+11^2+11
=> 10A = 11A - A = 11^10 - 1
=> A = (11^10 -1)/10 chia hết 7
a: 10+8=18 chia hết cho 9
b: 1531 chia 2 dư 1
2001 chia 2 dư 1
=>1531+2001 chia 2 dư 2
=>1531+2001 chia hết cho 2
c: (10+5)=15 chia hết cho 3
10+5=15 ko chia hết cho 9
d:Sửa đề: 11+11^2+11^3+11^4+11^5+11^6
=11(1+11)+11^3(1+11)+11^5(1+11)
=12(11+11^3+11^5) chia hết cho 12