K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

cái này dễ lắm chỉ là chưa để ý thôi:

a,1/101>1/102>...>1/199>1/200

=>1/101+1/102+...+1/199+1/200<100*1/101=100/101<1

các phần khác làm tương tự

đánh mỏi tay quá duyệt luôn đi

16 tháng 3 2019

cái này ở trong học tốt toán 6 đúng không

21 tháng 3 2015

1/Bạn thấy trong phép chia thì phép nào có số chia lớn hơn thì thương nhỏ hơn, vì vậy ps có mẫu lớn hơn thì nhỏ hơn.

2/ Ta có: Số số hạng của tổng là 200

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(...\)

\(\frac{1}{199}>\frac{1}{200}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}>\frac{1}{200}+...+\frac{1}{200}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{199}+\frac{1}{200}>\frac{1}{200}+...+\frac{1}{200}\)(mỗi bên đều 200 số hạng)

\(\Rightarrow A>\frac{1}{200}.200\) 

\(\Rightarrow A>1\)

19 tháng 8 2015

a,  Đặt A = 1/101 + 1/101 + 1/103 +...+ 1/150 
A là tổng 50 số giảm dần, và số nhỏ nhất là 1/150 
Vậy nên A > 50 x 1/150 
=> A > 1/3

b, ta có 
1/101 > 1/150
1/102> 1/150
...>1/150
1/150 = 1/150
=> 1/101 + 1/102 + .... + 1/150 > 1/150 +1/150+....+1/150(50 số hạng )= 1/3
ta có
1/151 >1/200
1/152 > 1/200
..>1/200
1/200 = 1/200
=> 1/151 + 1/152+....+1/200 > 1/200+1/200+ ...+1/200( 50 số hạng) = 1/4
==> 1/101 + 1/102+....+1/200 > 1/3 +1/4
==> A > 7/12

14 tháng 2 2016

j mà  nhìu zu zậy làm bao giờ mới xong

14 tháng 2 2016

Ủng hộ mk đi các bạn
 

21 tháng 4 2018

ta có: \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{101}+\frac{1}{101}+...+\frac{1}{101}=\frac{100}{101}\)

mà \(\frac{100}{101}< 1\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< 1\left(đpcm\right)\)

Chúc bn học tốt !!!

21 tháng 4 2018

CT:>1

27 tháng 7 2018

a )   Số lượng số của dãy số trên là : 

\(\left(200-101\right):1+1=100\) ( số ) 

Do \(100⋮2\)nên ta nhóm dãy số trên thành 2 nhóm như sau : 

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150};\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\left(1\right)\)

\(\frac{1}{151}>\frac{1}{200};\frac{1}{152}>\frac{1}{200};...;\frac{1}{199}>\frac{1}{200};\frac{1}{200}=\frac{1}{200}\)

\(\Rightarrow\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}>\frac{1}{200}.50=\frac{1}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}>\frac{1}{3}+\frac{1}{4}=\frac{7}{2}\left(3\right)\)

\(\frac{1}{101}< \frac{1}{100};\frac{1}{102}< \frac{1}{100};...;\frac{1}{199}< \frac{1}{100};\frac{1}{200}< \frac{1}{100}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}.100=1\left(4\right)\)

Từ \(\left(3\right);\left(4\right)\Rightarrowđpcm\)

b )  Số lượng số dãy số trên là : 

\(\left(150-101\right):1+1=50\)( số ) 

Ta có : \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};\frac{1}{103}>\frac{1}{150};...;\frac{1}{150}=\frac{1}{150}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}>\frac{1}{150}.50=\frac{1}{3}\)

\(\Rightarrowđpcm\)