Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-1\right)^2+\left(y+2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\)
Nên \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\) \(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy x = 1 và y = -2
Ta có \(\frac{x}{y}=\frac{0,2}{0,3}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{50}{5}=10\)
\(\Rightarrow x=10\cdot2=20;y=10\cdot3=30\)
Viết lại tỉ số ta có : \(\frac{x}{8}=\frac{y}{12}\text{ và }\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tí số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Vậy\(\hept{\begin{cases}x=8\times2=16\\y=12\times2=24\\z=15\times2=30\end{cases}}\)
\(\frac{x}{y}=\frac{4}{9}\Rightarrow x=\frac{4y}{9}\) thay vào \(3x-2y=12\)
\(\Rightarrow3.\frac{4y}{9}-2y=12\Rightarrow y=-2\) thay vào \(x=\frac{4y}{9}=\frac{4.\left(-2\right)}{9}=-\frac{8}{9}\)