K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

10 x 10 = 100

24 tháng 7 2019

10 . 10 - 9 . 8 - 9 . 6

= 100 - 72 - 54

= 28 - 54

= - 26

7 tháng 7 2017

 \(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+....+\frac{1}{10\cdot10}\)

Ta có : 

\(\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

\(\frac{1}{4\cdot4}< \frac{1}{3\cdot4}\)

.....................................

\(\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)

Ta có : 

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{1}{1}-\frac{1}{10}\)

\(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}\)

\(\Rightarrow\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{10\cdot10}< \frac{9}{10}< 1\)

11 tháng 6 2018

Đặt \(B=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{10.10}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(\Rightarrow B< 1-\frac{1}{10}< 1\)

\(\Rightarrow B< 1\left(đpcm\right)\)

28 tháng 4 2018

5/8+3/5x5/12=

20 tháng 4 2016

\(A=\frac{2010+1}{2010-1}\)

\(A=1+\frac{2}{2010-1}>1\)

\(B=\frac{2010-1}{2010-3}\)

\(B=1-\frac{2}{2010-3}<1\)

Từ đó A > B

30 tháng 4 2017

Ta thấy:\(A=\frac{20^{10}+1}{20^{10}-1}>1\)

Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}>\frac{20^{10}+1-2}{20^{10}-1-2}=\frac{20^{10}-1}{20^{10}-3}=B\)

Vậy \(A>B\)

3 tháng 5 2017

Ta có:

\(A=\frac{20^{10}+1}{20^{10}-1}\)

\(=\frac{20^{10}-1+2}{20^{10}-1}\)

\(=1+\frac{2}{20^{10}-1}\)

\(B=\frac{20^{10}-1}{20^{10}-3}\)

\(=\frac{20^{10}-3+2}{20^{10}-3}\)

\(=1+\frac{2}{20^{10}-3}\)

Ta lại có:

\(20^{10}-1>20^{10}-3\)

\(\Rightarrow\)\(\frac{2}{2^{10}-1}< \frac{2}{2^{10}-3}\)

\(\Rightarrow\)\(1+\frac{2}{2^{10}-1}< 1+\frac{2}{2^{10}-3}\)

Vậy ta kết luận A < B