Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có x = 99 => x+1 = 100
A = x5 - (x+1)x4 + (x+1)x3 + (x+1)x2 + (x+1)x - 9
= x5 - x5 + x4 - x4 + x3 - x3 + x2 - x2 + x - 9
= x - 9
=> A = 90
b) Chữa đề: x6 - 20x5 - 20x4 - 20x3 - 20x2 - 20x + 3
Có: x = 21 => x-1 = 20
B = x6 - (x-1)x5 - (x-1)x4 - (x-1)x3 - (x-1)x2 - (x-1)x + 3
= x6 - x6 + x5 - x5 + x4 - x4 + x3 - x3 + x2 - x + 3
= x + 3
=> B = 24
\(100x^2-\left(x^2+25\right)^2\)
\(=\left(10x\right)^2-\left(x^2+25\right)^2\)
\(=\left(10x-x^2-25\right)\left(10x+x^2+25\right)\)
\(=\left[-\left(-10x+x^2+25\right)\right]\left(10x+x^2+25\right)\)
\(=\left[-\left(x^2-2.x.5+5^2\right)\right]\left(x^2+2.x.5+5^2\right)\)
\(=-\left(x-5\right)^2\left(x+5\right)^2\)
P/s: Ko chắc!
Bài 2:
a: \(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
=>(x+5)(x-6)=0
=>x=-5 hoặc x=6
b: \(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
=>-4x+2=0
hay x=1/2
c: \(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
\(\left(9^{30}-27^{19}\right):3^{57}+\left(125^9-25^{12}\right):5^{24}\)
\(=\left(3^{60}-3^{57}\right):3^{57}+\left(5^{27}-5^{24}\right):5^{24}\)
\(=3^{57}\left(3^3-1\right):3^{57}+5^{24}\left(5^3-1\right):5^{24}\)
\(=3^3-1+5^3-1\)
\(=27-1+125-1\)
\(=150\)
2 )
\(x^2-25-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5\right)-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-5-1\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
Vậy ...
b )
\(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
\(\Leftrightarrow2-4x=0\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
c )
\(x^2\left(x^2+4\right)-x^2-4=0\)
\(\Leftrightarrow x^2\left(x^2+4\right)-\left(4+x^2\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(L\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy ...
1) x2 + x2y - y - 1
= x2( 1 + y ) - ( 1 + y )
= ( 1 + y )( x2 - 1 )
= ( 1 + y )( x - 1 )( x + 1 )
2) x2 + y2 - 2xy - 25
= ( x2 - 2xy + y2 ) - 25
= ( x - y )2 - 52
= ( x - y - 5 )( x - y + 5 )
3) ( 2x - 1 )( x2 + 2x - 1 ) - ( 1 - 2x )( x - 3 )
= ( 2x - 1 )( x2 + 2x - 1 ) + ( 2x - 1 )( x - 3 )
= ( 2x - 1 )( x2 + 2x - 1 + x - 3 )
= ( 2x - 1 )( x2 + 3x - 4 )
= ( 2x - 1 )( x2 - x + 4x - 4 )
= ( 2x - 1 )[ x( x - 1 ) + 4( x - 1 ) ]
= ( 2x - 1 )( x - 1 )( x + 4 )
4) a2 + x2 - 16 + 2ax
= ( a2 + 2ax + x2 ) - 16
= ( a + x )2 - 42
= ( a + x - 4 )( a + x + 4 )
\(1,\)
\(\left(x^2-9y^2\right)\left(4x+12y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-4\left(x+3y\right)\)
\(=\left(x+3y\right)\left(x-3y-4\right)\)
\(3,\)
\(-x^2+2xy-y^2+25\)
\(=-\left(x^2-2xy+y^2\right)+25\)
\(=25-\left(x-y\right)^2\)
\(=5^2-\left(x-y\right)^2\)
\(=\left(5-x+y\right)\left(5+x-y\right)\)
1. \(x^4-2x^2+1=\left(x^2-1\right)^2\)
2. \(x^2+5x+\dfrac{25}{4}=x^2+2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
3. \(16x^2-8x+1=\left(4x-1\right)^2\)
4. \(x^2+x-y^2+y=\left(x-y\right)\left(x+y\right)+\left(x+y\right)=\left(x-y+1\right)\left(x+y\right)\)
5. \(\dfrac{1}{4}x^2-\dfrac{4}{9}y^2=\left(\dfrac{1}{2}x-\dfrac{2}{3}y\right)\left(\dfrac{1}{2}x+\dfrac{2}{3}y\right)\)
6. \(a^2-2ab+b^2-x^2=\left(a-b\right)^2-x^2=\left(a-b-x\right)\left(a-b+x\right)\)
7. \(4x^2-20x+25-y^2=\left(2x-5\right)^2-y^2=\left(2x-5-y\right)\left(2x-5+y\right)\)
1.(x -5)^2 - 25 =0
=> (x - 5)^2 = 25
=> x - 5 = 5 hoặc x - 5 = -5
=> x = 10 hoặc x = 0
vậy_
2. (x -2)^3 =27
=> x - 2 = 3
=> x = 5
vậy_
3. 3(x -7) + 2x(x+2) = 2x^2
=> 3x - 21 + 2x^2 + 4x = 2x^2
=> 7x - 21 = 0
=> 7x = 21
=> x = 3
vậy_
4. (x^2 - 4) (x +8) =0
=> x^2 - 4 = 0 hoặc x + 8 = 0
=> x^2 = 4 hoặc x = -8
=> x = 2 hoặc x = -2 hoặc x = -8
vậy_
5. x^ 2 + 3x = 0
=> x(x + 3) = 0
=> x = 0 hoặc x + 3 = 0
=> x = 0 hoặc x = -3
vậy_
6. 3x^3 - 3x = 0
=> 3x(x^2 - 1) = 0
=> 3x(x - 1)(x + 1) = 0
=> x = 0 hoặc x = 1 hoặc x = -1
vậy_
7. (x +1)^2 = ( 2x +3)^2
=> (x + 1 + 2x + 3)(x + 1 - 2x - 3) = 0
=> (3x + 3)(-x - 2) = 0
=> x = -1 hoặc x = -2
vậy_
Bài làm
1) ( x - 5 )2 - 25 = 0
<=> ( x - 5 - 5 )( x - 5 + 5 ) = 0
<=> x( x - 10 ) =
<=> \(\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)
Vậy S = { 0; 10 }
2) \(\left(x-2\right)^3=27\)
\(\Leftrightarrow\left(x-2\right)^3=3^3\)
\(\Leftrightarrow x-2=3\)
\(\Leftrightarrow x=5\)
Vậy x = 5 là nghiệm phương trình.
3) \(3\left(x-7\right)+2x\left(x+2\right)=2x^2\)
\(\Leftrightarrow3x+2x^2+4x-2x^2=21\)
\(\Leftrightarrow7x=21\)
\(\Leftrightarrow x=\frac{21}{7}=3\)
Vậy x = 3 là nghiệm phương trình
4) \(\left(x^2-4\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\pm2\\x=-8\end{cases}}}\)
Vậy S = { 2; -2; -8 }
5) \(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)
Vậy S = { 0; -3 }
6) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)
Vậy S = { +1; 0 }
7) \(\left(x+1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(2x+3\right)^2=0\)
\(\Leftrightarrow\left(x+1-2x-3\right)\left(x+1+2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x-2=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}}\)
Vậy S = { -2; -4/3 }
# Học tốt #
Phân tích ? -.-
100x2 - ( x2 + 25 )2
= ( 10x )2 - ( x2 + 25 )2
= [ 10x - ( x2 + 25 ) ][ 10x + ( x2 + 25 ) ]
= ( 10x - x2 - 25 )( 10x + x2 + 25 )
= -( x2 - 10x + 25 )( x2 + 10x + 25 )
= -( x2 - 2.x.5 + 52 )( x2 + 2.x.5 + 52 )
= -( x - 5 )2( x + 5 )2