K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

a. Thay \(x_0=2\) vào phương trình, ta được:

\(2^2-3.2+7-1-2.2=8\ne0\)

\(\Rightarrow x_0=2\) không phải là nghiệm của pt

b. Thay \(x_0=-2\) vào phương trình, ta được:

\(\left(-2\right)^2-3.\left(-2\right)-10=0\)

\(\Rightarrow x_0=-2\) là nghiệm của pt

c. Thay \(x_0=2\) vào phương trình, ta được:

\(2^2-3.2+4-2.2+2=0\)

\(\Rightarrow x_0=2\) là nghiệm của pt

d. Thay \(x_0=-1\) vào phương trình, ta được:

\(\left(-1+1\right)\left(-1-2\right)\left(-1-5\right)=0\)

\(\Rightarrow x_0=-1\) là nghiệm của pt

e. Thay \(x_0=-1\) vào phương trình, ta được:

\(2.\left(-1\right)^2+3.\left(-1\right)+1=0\)

\(\Rightarrow x_0=-1\) là nghiệm của pt

f. Thay \(x_0=5\) vào phương trình, ta được:

\(4.5^2-3.5-2.5+1=76\ne0\)

\(\Rightarrow x_0=5\) không là nghiệm của pt

13 tháng 12 2016

DO khong co dieu kien cua x nen ban hay lay x la mot so tu nhien bat ki

giả sử lấy x=1 thì ta có thể dễ dàng tính được tổng bằng 4^5=1024

 

6 tháng 12 2015

Ta có:

\(\frac{3x^3+x^2-13x+5}{x^2+2x-1}=0\Leftrightarrow3x^2+x^2-13x+5=0\)

\(\Leftrightarrow\left(3x-5\right)\left(x^2+2x-1\right)=0\)

Do đó:

\(3x-5=0\Leftrightarrow x=\frac{5}{3}\)

Vì  \(x_0\)  là giá trị của  \(x\)  thỏa mãn \(\frac{3x^3+x^2-13x+5}{x^2+2x-1}=0\)  nên  \(x_0=x=\frac{5}{3}\)

Do đó:  \(3x_0=3.\frac{5}{3}=5\)

 

 

1 tháng 2 2016

tui chưa học tới

1 tháng 2 2016

chưa học tới

17 tháng 7 2017

mk chỉ cần câu c thôi

17 tháng 7 2017

\(x^2+\dfrac{1}{2}x+\dfrac{1}{4}=\left(x+\dfrac{1}{2}\right)^2\)

8 tháng 8 2016

\(\Delta\text{(1) }+\Delta\text{ (2) }=a_1^2+a_2^2-4\left(b_1+b_2\right)\ge2a_1a_2-4\left(b_1+b_2\right)=2\left[a_1a_2-2\left(b_1+b_2\right)\right]\ge0\)

5 tháng 10 2017

a, \(x^3-5x=0\)

\(\Rightarrow x\left(x^2-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)

b, \(4x^3-9x=0\)

\(\Rightarrow x\left(4x^2-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)

c, \(2x^3-72x=0\)

\(\Rightarrow2x\left(x^2-36\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm6\end{matrix}\right.\)

d, \(4\left(3x+1\right)^2+16=25\)

\(\Rightarrow4\left(3x+1\right)^2-9=0\)

\(\Rightarrow\left[2\left(3x+1\right)-3\right]\left[2\left(3x+1\right)+3\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}2\left(3x+1\right)-3=0\\2\left(3x+1\right)+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}3x+1=\dfrac{3}{2}\\3x+1=-\dfrac{3}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{5}{6}\end{matrix}\right.\)

5 tháng 10 2017

a, \(x^2-5x=0\)

\(\Rightarrow x\left(x^2-5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)

b, \(4x^3-9x=0\)

\(\Rightarrow x\left(4x^2-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\4x^2-9=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{\dfrac{9}{4}}\end{matrix}\right.\)

c, \(2x^3-72x=0\)

\(\Rightarrow2x\left(x^2-36\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x=0\\x^2-36=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)