K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2018

bài 1: a) \(mx^2-2\left(m-1\right)x+m+1=0\)

\(\Delta'=\left[-\left(m-1\right)\right]^2-m\left(m+1\right)\)

\(\Delta'=m^2-2m+1-m^2-m\)

\(\Delta'=-3m+1\)

để pt đã cho vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m+1< 0\Leftrightarrow m>\dfrac{1}{3}\)

b) \(3x^2+mx+m^2=0\)

\(\Delta=m^2-4.3.m^2\)

\(\Delta=m^2-12m^2=-11m^2\)

để pt đã cho vô nghiệm thì \(\Delta< 0\Leftrightarrow-11m^2< 0\Leftrightarrow m>0\)

20 tháng 4 2018

c) \(m^2.x^2-2m^2x+4m^2+6m+3=0\)

\(\Delta'=\left(-m^2\right)^2-m^2.\left(4m^2+6m+3\right)\)

\(\Delta'=m^4-4m^4-6m^3-3m^2\)\(\Delta'=-3m^4-6m^3-3m^2\)

để pt vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m^4-6m^3-3m^2< 0\)

\(\Leftrightarrow-3m^2.\left(m^2+2m+1\right)< 0\)

\(\Leftrightarrow-3m^2.\left(m+1\right)^2< 0\)

\(\Leftrightarrow-3m^2< 0\) ( vì \(\left(m+1\right)^2>0\forall m\ne-1\) )

\(\Leftrightarrow m>0\)

vậy \(m>0\)\(m\ne1\)

3 tháng 6 2019

\(\Delta=\left(4m-1\right)^2-4\left(3m^2-2m\right)=4m^2+1\)

Vì \(4m^2\ge0\Rightarrow\Delta>0\)

Vậy pt luôn có 2 nghiệm phân biệt \(x_1,x_2\) với \(\forall m\)

Theo Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=4m-1\\x_1.x_2=3m^2-2m\end{matrix}\right.\)

Theo bài ra: \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=7\)

Kết hợp Vi-ét: \(\left(4m-1\right)^2-2\left(3m^2-2m\right)-7=0\)

\(\Leftrightarrow10m^2-4m-6=0\)\(\Rightarrow\left[{}\begin{matrix}m=1\left(tm\right)\\m=-\frac{3}{5}\left(tm\right)\end{matrix}\right.\)

Vậy ...

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0a) Giải phương trình với m = -2b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1c) Tìm các giá trị của m để phương trình trên có nghiệm kép2.Xác định m để mỗi cặp phương trình sau có nghiệm chunga) x2 + mx +2 = 0 và x2 +2x + m = 0b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 03. Cho phương trình (m+1)x2 +4mx +4m - 1 =0a) Giải phương trình với m...
Đọc tiếp

1.Cho phương trình: x2 - 2(m - 2)x + m2 -3m +5 = 0

a) Giải phương trình với m = -2

b) Tìm các giá trị của m để phương trình có một trong các nghiệm bằng -1

c) Tìm các giá trị của m để phương trình trên có nghiệm kép

2.Xác định m để mỗi cặp phương trình sau có nghiệm chung

a) x2 + mx +2 = 0 và x2 +2x + m = 0

b) x2 - (m+4)x + m +5 =0 và x2 - (m+2)x +m +1 = 0

3. Cho phương trình (m+1)x2 +4mx +4m - 1 =0

a) Giải phương trình với m = - 2

b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt

c) Tìm m để phương trình có hai nghiệm thỏa mãn điều kiện x1 = - 2x2

4. Cho phương trình x2 - 2(m+4)x +m2 -8 =0

a) Tìm m để biểu thức A= x12 + x22 - x1 - x2 đạt giá trị nhỏ nhất

b) Tìm m để biểu thức B= x1 + x2 -3x1x2 đạt giá trị lớn nhất

c) Tìm m để biểu thức C= x12 + x22 - x1x2 đạt giá trị lớn nhất

Mong mọi người giúp mình, mình thực sự rất cần. Cảm ơn trước ạ. Làm được bài nào thì cmt ngay giúp mình ạ.

1
18 tháng 2 2021

Bài 1 : a, Thay m = -2 vào phương trình ta được : 

\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)

Ta có : \(\Delta=64-60=4>0\)

Vậy phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)

b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)

\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)

\(1+2\left(m-2\right)+m^2-3m+5=0\)

\(6+2m-4+m^2-3m=0\)

\(2-m+m^2=0\)( giải delta nhé )

\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)

Vậy phương trình vô nghiệm 

c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )

8 tháng 2 2019

Làm hộ 1 cái thôi , mấy cái kia làm y hệt

\(1,x^2-2\left(m-1\right)x-3-m=0\)

Có: \(\Delta'=\left(m-1\right)^2+3+m\)

            \(=m^2-2m+1+3+m\)

            \(=m^2-m+4\)

             \(=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\forall m\)         

=> Pt luôn có nghiệm vs mọi m