Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( x - 3)4 + ( x - 5)4 = 82
Đặt : x - 4 = a , ta có :
( a + 1)4 + ( a - 1)4 = 82
⇔ a4 + 4a3 + 6a2 + 4a + 1 + a4 - 4a3 + 6a2 - 4a + 1 = 82
⇔ 2a4 + 12a2 - 80 = 0
⇔ 2( a4 + 6a2 - 40) = 0
⇔ a4 - 4a2 + 10a2 - 40 = 0
⇔ a2( a2 - 4) + 10( a2 - 4) = 0
⇔ ( a2 - 4)( a2 + 10) = 0
Do : a2 + 10 > 0
⇒ a2 - 4 = 0
⇔ a = + - 2
+) Với : a = 2 , ta có :
x - 4 = 2
⇔ x = 6
+) Với : a = -2 , ta có :
x - 4 = -2
⇔ x = 2
KL.....
b) ( n - 6)( n - 5)( n - 4)( n - 3) = 5.6.7.8
⇔ ( n - 6)( n - 3)( n - 5)( n - 4) = 1680
⇔ ( n2 - 9n + 18)( n2 - 9n + 20) = 1680
Đặt : n2 - 9n + 19 = t , ta có :
( t - 1)( t + 1) = 1680
⇔ t2 - 1 = 1680
⇔ t2 - 412 = 0
⇔ ( t - 41)( t + 41) = 0
⇔ t = 41 hoặc t = - 41
+) Với : t = 41 , ta có :
n2 - 9n + 19 = 41
⇔ n2 - 9n - 22 = 0
⇔ n2 + 2n - 11n - 22 = 0
⇔ n( n + 2) - 11( n + 2) = 0
⇔ ( n + 2)( n - 11) = 0
⇔ n = - 2 hoặc n = 11
+) Với : t = -41 ( giải tương tự )
@Giáo Viên Hoc24.vn
@Giáo Viên Hoc24h
@Giáo Viên
@giáo viên chuyên
@Akai Haruma
\(x^4-4x^3-2x^2-16x-24=0\)
Giả sử đa thức được tách về dạng:
\(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
Nhân phá ra ta được:
\(x^4+\left(a+c\right)x^3+\left(b+d+ac\right)x^2+\left(ad+bc\right)x+bd\)
Đồng nhất hệ số với vế trái: \(\Rightarrow\left\{{}\begin{matrix}a+c=-4\\b+d+ac=-2\\ad+bc=-16\\bd=-24\end{matrix}\right.\)
Giải hệ pt này rất tốn thời gian, nên ta sẽ xử lý tiếp bằng cách dự đoán
\(bd=-24\) nên có thể \(\left(b;d\right)=\left(2;-12\right);\left(-2;12\right);\left(4;-6\right);\left(-4;6\right);\left(1;-24\right);\left(-1;24\right)\)
Thay vào 2 pt đầu và sử dụng Viet đảo kiểm tra thấy chỉ có cặp \(\left(4;-6\right)\) thỏa mãn, khi đó (a;c)=(0;-4)
Vậy \(x^4-4x^3-2x^2-16x-24=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(x^2-4x-6\right)=0\)
Tới đây ez
Cách 2: sử dụng casio
Chọn MODE-7 chế độ Table, nhập hàm \(F\left(X\right)=X^4-4X^3-2X^2-16X-24=0\)
Sau đó "=", START chọn -10 rồi "=", end chọn 10 rồi "=", step chọn 1 rồi "="
Sử dụng nút di chuyển "replay" lên xuống kiểm tra cột F(X), tìm vị trí nào F(X) đổi dấu thì nhìn sang cột X bên trái
Ví dụ ở đây ta thấy F(X) đối dấu lần 1 từ 48 sang -5 tương ứng X khoảng giữa -2 và -1, như vậy pt có 1 nghiệm X nằm giữa -2 và -1
Tiếp tục kiểm tra, lại thấy 1 nghiệm X giữa 5 và 6
Vậy là đủ, bấm MODE-1 thoát ra, nhập tiếp \(X^4-4X^3-2X^2-16X-24\) ngoài màn hình MODE-1 rồi "="
Sau đó shift+SOLVE
Máy hỏi Solve for X thì ta chọn 1 số bất kì giữa -2 và -1, ví dụ -1.5 rồi "="
Nó sẽ cho 1 nghiệm rất xấu, ko vấn đề, bấm shift+RCL (phím nằm trên số 7) rồi phím "-" (chữ A đỏ) để máy gán nghiệm vào biến A
Bấm AC, rồi bấm nút replay đi lên đến khi xuất hiện pt nhập ban đâu, tiếp tục shift+SOLVE, lần này SOLVE forX ta chọn 1 số nằm giữa 4 và 5 (ví dụ 4.5)
Được 1 nghiệm nữa, lại shift-RCL- rồi nút B đỏ (nằm kế nút A đỏ) để máy gán nghiệm vào biến B
Nhấn AC, rồi nhập alpha A+alpha B rồi "="
Nó ra 4
Tiếp tục nhập \(A\times B\) rồi "="
Nó ra -6
Vậy theo Viet đảo, A và B là nghiệm của: \(x^2-4x-6\)
Vậy thì \(x^4-4x^3-2x^2-16x-24\) có 1 nhân tử là \(x^2-4x-6\)
Tiến hành chia đa thức \(x^4-4x^3-2x^2-16x-24\) cho \(x^2-4x-6\) ta được \(x^2+4\)
Vậy \(x^4-4x^3-2x^2-16x-24=\left(x^2+4\right)\left(x^2-4x-6\right)\)
bài toán coi như xong
a, \(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)
\(\Leftrightarrow2\left(x^2-4x+3x-12\right)=2x^2+4x-x-2-27\)
\(\Leftrightarrow2x^2-2x-24=2x^2+3x-29\Leftrightarrow-5x+5=0\Leftrightarrow x=1\)
b, \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x-3\right)\left(x+3\right)=26\)
\(\Leftrightarrow x^3-8-x\left(x^2-9\right)=26\Leftrightarrow-8+9x=26\)
\(\Leftrightarrow9x=18\Leftrightarrow x=2\)
a) \(2x^3+3x^2-8x-12=0\)
\(\Leftrightarrow\left(2x^3-8x\right)+\left(3x^2-12\right)=0\)
\(\Leftrightarrow2x\left(x^2-4\right)+3\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\)\(x-2=0\)
hoặc \(x+2=0\)
hoặc \(2x+3=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-2\)
hoặc \(x=-\frac{3}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-\frac{3}{2}\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(x-4=0\)
hoặc \(x-1=0\)
hoặc \(x+1=0\)
\(\Leftrightarrow\)\(x=4\)
hoặc \(x=1\)
hoặc \(x=-1\)
Vậy tập nghiệm của phương trình là \(S=\left\{4;1;-1\right\}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x^2+x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{2\right\}\)
d) \(x^4-3x^3+3x^2-x=0\)
\(\Leftrightarrow x\left(x^3-3x^2+3x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)^3=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;1\right\}\)
e) \(\left(x+1\right)\left(x^2-2x+3\right)=x^3+1\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-2x+3\right)=\left(x+1\right)\left(x^2-x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2-2x+3=x^2-x+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;2\right\}\)
g) \(x^3+3x^2+3x+1=4x+4\)
\(\Leftrightarrow\left(x+1\right)^3=4\left(x+1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\left(x+1\right)^2=4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=\pm2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-3\end{cases}}\) hoặc \(x=1\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;1;-3\right\}\)
b) \(x^3-4x^2-x+4=0\)
\(\Leftrightarrow x^2\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\pm1\end{cases}}\)
c) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow x=2\) ( Do \(x^2+x+1>0\) )
1: =>|x-4|+|x+2|=0
=>x-4=0 và x+2=0
=>\(x\in\varnothing\)
2: =>x^2-x-6=3x+5
=>x^2-4x-11=0
=>x^2-4x+4-15=0
=>(x-2)^2-15=0
=>x=căn 15+2 hoặc x=-căn 15+2
3: =>x^2-x=3x+5
=>x^2-4x-5=0
=>(x-5)(x+1)=0
=>x=-1 hoặc x=5
câu 2 vế bên phải 3x+5 ở đâu ra vậy bn