\(\frac{1}{-27}\)

2. \(\frac{1}{3}...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

\(1.\left(x+3\right)^3=\frac{1}{-27}\)

\(\left(x+3\right)^3=\left(\frac{1}{-3}\right)^3\)

\(\Rightarrow x+3=\frac{1}{-3}\)

\(\Rightarrow x=\frac{-1}{3}-3\)

\(x=\frac{-10}{3}\)

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

6 tháng 5 2019

Bạn tham khảo câu trả lời tương tự ở đây nhé:

Câu hỏi của Nguyễn Hải - Toán lớp 7 - Học toán với OnlineMath

6 tháng 5 2019

\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+...+\(\frac{2}{n\left(n+1\right)}\)=\(\frac{2017}{2019}\)

\(\frac{2}{6}\)+\(\frac{2}{12}\)+\(\frac{2}{20}\)+...+\(\frac{2}{n\left(n+1\right)}\)=\(\frac{2017}{2019}\)

2\(\times\)\((\)\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+...+\(\frac{1}{n.\left(n+1\right)}\)\()\)=\(\frac{2017}{2019}\)

2\(\times\)\((\)\(\frac{1}{2}\)_\(\frac{1}{3}\)+\(\frac{1}{3}\)_\(\frac{1}{4}\)+\(\frac{1}{4}\)_\(\frac{1}{5}\)+...+\(\frac{1}{n}\)_\(\frac{1}{n+1}\)\()\)=\(\frac{2017}{2019}\)

2\(\times\)\((\)\(\frac{1}{2}\)_\(\frac{1}{n+1}\)\()\)=\(\frac{2017}{2019}\)

\(\frac{1}{2}\)_\(\frac{1}{n+1}\)=\(\frac{2017}{4038}\)

\(\frac{1}{n+1}\)=\(\frac{1}{2}\)_\(\frac{2017}{4038}\)

\(\frac{1}{n+1}\)=\(\frac{1}{2019}\)

\(\Rightarrow\)n+1=2019

\(\Rightarrow\)n=2018\(\in\)Z

Vậy n=2018

3 tháng 8 2018

\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

3 tháng 8 2018

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Leftrightarrow x=308-3\)

\(\Leftrightarrow x=305\)

Vậy \(x=305\)

14 tháng 4 2019

\(2.THPT\)

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=9\left(1-\frac{1}{100}\right)\)

\(A=9.\frac{99}{100}\)

\(A=\frac{891}{100}\)

\(B=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{93.95}\)

\(B=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{93}-\frac{1}{95}\)

\(B=\frac{1}{5}-\frac{1}{95}\)

\(B=\frac{18}{95}\)

\(D=\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)

\(D=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)

\(D=\frac{1}{2}-\frac{1}{28}\)

\(D=\frac{13}{28}\)

12 tháng 2 2017

a/ \(\frac{-9}{10}.\frac{5}{14}+\frac{1}{10}.\left(\frac{-9}{2}\right)+\frac{1}{7}.\left(-\frac{9}{10}\right)\)

= \(-\frac{9}{10}.\left(\frac{5}{14}+\frac{1}{7}\right)+\frac{1}{10}.\left(-\frac{9}{2}\right)\)

= \(-\frac{9}{10}.\frac{1}{2}+\frac{1}{10}.\left(-\frac{9}{2}\right)\)

= \(\frac{-9}{20}+\left(-\frac{9}{20}\right)=\frac{-18}{20}=\frac{-9}{10}\)

b/ \(\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{11}\right).132\)

\(=\left(\frac{1}{2}.132\right)+\left(\frac{1}{3}.132\right)+\left(\frac{1}{4}.132\right)+\left(\frac{1}{6}.132\right)\)\(+\left(\frac{1}{11}.132\right)\)

\(=66+44+33+22+12=177\)

c/ \(-\frac{2}{3}.\left(\frac{8}{9}.\frac{8}{13}-\frac{8}{27}.\frac{8}{13}+\frac{4}{3}.\frac{22}{39}\right)\)

= \(-\frac{2}{3}.\left[\frac{8}{13}\left(\frac{8}{9}-\frac{8}{27}\right)+\frac{88}{117}\right]\)

= \(-\frac{2}{3}.\left(\frac{8}{13}.\frac{16}{27}+\frac{88}{117}\right)\)

= còn lại làm nốt nha! bận ròy

12 tháng 2 2017

gidkjbibvvfrxdrfdfsddf

24 tháng 4 2016

dễ thì dễ thiệt nhưng sao dài quá vậy

28 tháng 4 2016

Qua chuan

9 tháng 7 2021

1. 

a.\(\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

b. \(\left(\frac{1}{2}\right)^3=\frac{1}{8}\)

c. \(\left(\frac{-3}{5}\right)^5=\frac{-243}{3125}\)

d. \(\left(\frac{-1}{5}\right)^2=\frac{1}{25}\)

e. \(\left(\frac{-1}{6}\right)^3=\frac{-1}{216}\)

10 tháng 7 2021

Trả lời:

Bài 1: 

a, \(\left(\frac{1}{2}\right)^4=\frac{1^4}{2^4}=\frac{1}{16}\)

b, \(\left(\frac{1}{2}\right)^3=\frac{1^3}{2^3}=\frac{1}{8}\)

c, \(\left(\frac{-3}{5}\right)^2=\frac{\left(-3\right)^2}{5^2}=\frac{9}{25}\)

d, \(\left(\frac{-1}{5}\right)^2=\frac{\left(-1\right)^2}{5^2}=\frac{1}{25}\)

e, \(\left(\frac{-1}{6}\right)^3=\frac{\left(-1\right)^3}{6^3}=\frac{-1}{216}\)

Bài 2:

a, \(\left(\frac{3}{2}\right)^2.\left(\frac{4}{3}\right)^2=\frac{9}{4}.\frac{16}{9}=4\)

b, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)

c, \(\left(-\frac{1}{2}\right)^2.\left(\frac{2}{5}\right)^2=\frac{1}{4}.\frac{4}{25}=\frac{1}{25}\)

d, \(\left(-\frac{1}{2}\right)^3.\left(\frac{2}{3}\right)^3=-\frac{1}{8}.\frac{8}{27}=-\frac{1}{27}\)

e, \(\left(-5\right)^3.\frac{1}{5}=-125.\frac{1}{5}=-25\)

f, \(\left(\frac{2}{9}\right)^5.\left(-\frac{27}{4}\right)^5=\frac{2^5}{9^5}.\frac{\left(-27\right)^5}{4^5}=\frac{2^5.\left(-27\right)^5}{9^5.4^5}=\frac{2^5.\left[\left(-3\right)^3\right]^5}{\left(3^2\right)^5.\left(2^2\right)^5}=-\frac{2^5.3^{15}}{3^{10}.2^{10}}=\frac{3^5}{2^5}\)