Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
b: \(A=x-\sqrt{x}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\)
Dấu '=' xảy ra khi x=1/4
\(a,A=\sqrt{27}+\frac{2}{\sqrt{3}-2}-\sqrt{\left(1-\sqrt{3}\right)^2}\)
\(=3\sqrt{3}+\frac{2\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\left(\sqrt{3}-1\right)\)
\(=3\sqrt{3}+\frac{2\sqrt{3}+4}{3-4}-\sqrt{3}+1\)
\(=3\sqrt{3}-2\sqrt{3}-4-\sqrt{3}+1\)
\(=-3\)
\(B=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{x-2\sqrt{x}+1}\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
\(=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
b, Ta có \(B< A\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}< -3\)
\(\Leftrightarrow\frac{\sqrt{x}-1}{\sqrt{x}}+3< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-1+3\sqrt{x}}{\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{4\sqrt{x}-1}{\sqrt{x}}< 0\)
\(\Leftrightarrow4\sqrt{x}-1< 0\left(Do\sqrt{x}>0\right)\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{4}\)
\(\Leftrightarrow0< x< \frac{1}{2}\)(Kết hợp ĐKXĐ)
Vậy ...
bài 1
a) ĐKXĐ : bạn tự tìm nhé
b) ta có A=\(\sqrt{x^2-1+2\sqrt{x^2-1}+1}-\sqrt{x^2-1-2\sqrt{x^2-1}+1}\)
=\(\sqrt{\left(\sqrt{x^2-1}+1\right)^2}+\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)
=\(\left|\sqrt{x^2-1}+1\right|+\left|\sqrt{x^2-1}-1\right|\)
=\(\sqrt{x^2-1}+1+\sqrt{x^2-1}-1\)( vì \(\left|x\right|\ge\sqrt{2}\))
=\(2\sqrt{x^2-1}\)
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
1/\(A=\dfrac{x^2-2x+2014}{x^2}\)
\(\Leftrightarrow A=\dfrac{2014x^2-2.x.2014+2014^2}{2014x^2}\)
\(\Leftrightarrow A=\dfrac{2013x^2+x^2-2.x.2014+2014^2}{2014x^2}\)
\(\Leftrightarrow A=\dfrac{2013x^2+\left(x-2014\right)^2}{2014x^2}\)
\(\Leftrightarrow A=\dfrac{2013}{2014}+\dfrac{\left(x-2014\right)^2}{2014x^2}\)
Có: \(\left(x-2014\right)^2\ge0\forall x\)
\(2014x^2>0\forall xvìx\ne0\)
\(\Rightarrow\dfrac{\left(x-2014\right)^2}{2014x^2}\ge0\)
\(\Rightarrow\dfrac{2013}{2014}+\dfrac{\left(x-2014\right)^2}{2014x^2}\ge\dfrac{2013}{2014}\)
\(\Rightarrow A\ge\dfrac{2013}{2014}\)
dấu "=" xảy ra khi và chỉ khi x - 2014 =0 <=> x = 2014
Vậy \(min_A=\dfrac{2013}{2014}\Leftrightarrow x=2014\)
2) Ta có:
\(x=\sqrt{a+\sqrt{a^2-1}}+\sqrt{a-\sqrt{a^2-1}}\)
\(\Leftrightarrow x^2=a-\sqrt{a^2-1}+2\sqrt{a-\sqrt{a^2-1}}.\sqrt{a+\sqrt{a^2-1}}+a+\sqrt{a^2-1}\)
\(\Leftrightarrow x^2=2a+2.\sqrt{\left(a-\sqrt{a^2-1}\right)\left(a+\sqrt{a^2-1}\right)}\)
\(\Leftrightarrow x^2=2a+2\sqrt{a^2-\left(a^2-1\right)}\)
\(\Leftrightarrow x^2=2a+2=2\left(a+1\right)\)
\(\Leftrightarrow-x^3=-2\left(a+1\right)x\)
Đặt \(A=x^3-2x^2-2\left(a+1\right)x+4x+2021\)
\(\Leftrightarrow A=x^3-2\left(2a+2\right)-x^3+4a+2021\)
\(\Leftrightarrow A=-4a-4+4a+2021\)
\(\Leftrightarrow A=2017\)