K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

\(1,\)

\(a,25+10a^2+a^4\)

\(=5^2+2.5.a^2+\left(a^2\right)^2\)
\(=\left(5+a^2\right)^2\)

\(b,\left(x^2+4x+4\right)-25y^2\)

\(=\left(x^2+2x.2+2^2\right)-\left(5y\right)^2\)

\(=\left(x+2\right)^2-\left(5y\right)^2\)

\(=\left(x+2-5y\right)\left(x+2+5y\right)\)

\(c,4b^2-\left(a^2-6a+9\right)\)

\(=\left(2b\right)^2-\left(a^2-2a.3+3^2\right)\)

\(=\left(2b\right)^2-\left(a-3\right)^2\)

\(=\left(2b-a+3\right)\left(2b+a-3\right)\)

Chúc bn học giỏi nhoa!!!

22 tháng 6 2017

Dễ mà : 

Ta có : 25 + 10a2 + a4

= 52 + 2.a2.5 + (a2)2

= (5 + a2)2

(áp dụng a2 + 2ab + b2 = (a + b)2 ) 

22 tháng 6 2017

1. (a - b + c - d).(a - b + c - d)
= (a - b + c - d)2

Câu 1 vậy là gọn nhé

2.
a) x2 - 10xy + 25y2
= x- 2x5y + (5y)2
= (x - 5y)2
b) 16a4 + 8a2b3 + b6
= (4a2)2 + 2.4a2.b3 + (b3)2
= (4a2 + b3)2
c) a4 - 1
= (a2)2 - 1
= (a2 - 1)(a2 + 1)
= (a - 1)(a + 1)(a2 + 1)
d) 16a4 - 81b4
= (4a2)2 - (9b2)2
= (4a2 - 9b2)(4a2 + 9b2)
= [(2a)2 - (3b)2](4a2 + 9b2)
= (2a - 3b)(2a + 3b)(4a2 + 9b2)
e) (a4 - 2a2b + b2) - b4
= [(a2)2 - 2a2b + b2] - (b2)2
= (a2 - b)2 - (b2)2
= (a2 - b - b2)(a2 - b + b2)
= [(a - b)(a + b) - b](a2 - b + b2)
f) 81x4 - (b2 - 2b + 1)
= (9x2)2 - (b - 1)2
= (9x2 - b + 1)(9x2 + b - 1)
 

11 tháng 8 2018

a) \(x^6-4=\left(x^3\right)^2-2^2=\left(x^3-2\right).\left(x^3+2\right)\)

b) \(-9x^2+1=1^2-\left(3x\right)^2=\left(1-3x\right).\left(1+3x\right)\)

c) \(x^{10}-9=\left(x^5\right)^2-3^2=\left(x^5-3\right).\left(x^5+3\right)\)

mk chỉ làm đk bài 1 thui ,thông cảm cho mk nha bạn

\(a;x^6-4=\left(x^3\right)^2-2^2=\left(x^3-2\right)\left(x^3+2\right)\)

\(b;-9x^2+1=1^2-3x^2=\left(1-3x\right).\left(1+3x\right)\)

\(c;x^{10}-9=\left(x^5\right)^2-3^2=\left(x^5-3\right).\left(x^5+3\right)\)

\(#LTH\)

3 tháng 9 2016

2) (a-1)2+(b-2)2+(2c-1)2=0

do (a-1)2, (b-2)2 và (2c-1)2 lớn hơn hoặc bằng 0 nên để thỏa mãn biểu thức trên thì (a-1)2, (b-2)và (2c-1)2 đồng thời bằng 0

suy ra a=1, b=2, c=1/2

11 tháng 4 2020

Bài 1:

a, x2-3xy-10y2

=x2+2xy-5xy-10y2

=(x2+2xy)-(5xy+10y2)

=x(x+2y)-5y(x+2y)

=(x+2y)(x-5y)

b, 2x2-5x-7

=2x2+2x-7x-7

=(2x2+2x)-(7x+7)

=2x(x+1)-7(x+1)

=(x+1)(2x-7)

Bài 2:

a, x(x-2)-x+2=0

<=>x(x-2)-(x-2)=0

<=>(x-2)(x-1)=0

<=>\(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

b, x2(x2+1)-x2-1=0

<=>x2(x2+1)-(x2+1)=0

<=>(x2+1)(x2-1)=0

<=>x2+1=0 hoặc x2-1=0

1, x2+1=0                                                          2, x2-1=0

<=>x2= -1(loại)                                                 <=>x2=1

                                                                         <=>x=1 hoặc x= -1

c, 5x(x-3)2-5(x-1)3+15(x+2)(x-2)=5

<=>5x(x-3)2-5(x-1)3+15(x2-4)=5

<=>5x(x2-6x+9)-5(x3-3x2+3x-1)+15x2-60=5

<=>5x3-30x2+45x-5x3+15x2-15x+5+15x2-60=5

<=>30x-55=5

<=>30x=55+5

<=>30x=60

<=>x=2

d, (x+2)(3-4x)=x2+4x+4

<=>(x+2)(3-4x)=(x+2)2

<=>(x+2)(3-4x)-(x+2)2=0

<=>(x+2)(3-4x-x-2)=0

<=>(x+2)(1-5x)=0

<=>\(\orbr{\begin{cases}x+2=0\\1-5x=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\-5x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{-1}{-5}\end{cases}}\)<=>\(\orbr{\begin{cases}x=-2\\x=\frac{1}{5}\end{cases}}\)

Bài 3:

a, Sắp xếp lại:  x3+4x2-5x-20

Thực hiện phép chia ta được kết quả là x2-5 dư 0

b, Sau khi thực hiện phép chia ta được : 

Để đa thức x3-3x2+5x+a chia hết cho đa thức x-3 thì a+15=0

=>a= -15

3 tháng 7 2017

bn chép lại đề nhé

a/ \(=\left(x+y\right)^2-4x^2y^2=\left(x+y+2xy\right)\left(x+y-2xy\right)\)

b/ \(=\left(2bc+b^2+c^2-a^2\right)\left(2bc-b^2-c^2+a^2\right)\)

\(=\left[\left(b+c\right)^2-a^2\right]\left[-\left(b+c\right)^2+a^2\right]\)

\(=\left(b+c-a\right)\left(b+c+a\right)^2\left(a-b-c\right)\)

c/ \(=2a^2+2b^2-2c^2+4ab=2\left[\left(a^2+b^2+2ab\right)-c^2\right]\)

\(=2\left(a+b-c\right)\left(a+b+c\right)\)

d/ \(=\left(4x^2-25\right)^2-9\left(4x^2-20x+25\right)\)

\(=\left(4x^2-25\right)^2-9\left(4x^2+25\right)+180x\)

tới đây bạn đặt a= 4x^2 -25 rồi làm típ nha, mình lười quá >< 

e/ tương tự câu d nha bạn

f/ \(=a^4\left(a^2-1\right)+2a^2\left(a+1\right)\)

\(=a^4\left(a-1\right)\left(a+1\right)+2a^2\left(a+1\right)\)

\(=a^2\left(a+1\right)\left(a^2+2\right)\)

g/   đặt \(a=3x^2+3x+2\) khi đó biểu thức trở thành

\(a^2-\left(a+4\right)^2=a^2-a^2-8a-16\)

\(=-8a-16=-8\left(3x^2+3x+2-8\right)=-8\left(3x^2+3x-6\right)\)

\(=-24\left(x^2+x-2\right)=-24\left(x-1\right)\left(x+2\right)\)

xong rùi nha bn. Chúc bn hc tốt (xin lỗi tại có mấy câu mình lười nha)

3 tháng 9 2018

\(x^2-4x^2y^2+y^2+2xy\)

\(=\left(x^2+2xy+y^2\right)-4x^2y^2\)

\(=\left(x+y\right)^2-4x^2y^2\)

\(=\left(x-2xy+y\right)\left(x+2xy+y\right)\)

11 tháng 8 2018

Bài 1 :

a ) \(x^6-4=\left(x^3\right)^2-2^2=\left(x^3-2\right)\left(x^3+2\right)\)

b ) \(-9x^2+1=1-\left(3x\right)^2=\left(1-3x\right)\left(1+3x\right)\)

c ) \(x^{10}-9=\left(x^5\right)^2-3^2=\left(x^5-3\right)\left(x^5+3\right)\)

Bài 2 :

a ) \(x^2+10x+26+y^2+2y\)

\(=x^2+10x+25+y^2+2y+1\)

\(=\left(x+5\right)^2+\left(y+1\right)^2\)

b ) \(x^2-2xy+2y^2+2y+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2+2y+1\right)\)

\(=\left(x-y\right)^2+\left(y+1\right)^2\)

c ) \(a^2-6a+10a+b^2+4b\)

\(=a^2+4a+b^2+4b\)

\(=a^2+4a+4+b^2+4b+4-8\)

\(=\left(a+2\right)^2+\left(b+2\right)^2-8\)

d ) \(4x^2+2y^2-4xy-2y+1\)

\(=\left(2x\right)^2-4xy+y^2+y^2-2y+1\)

\(=\left(2x-y\right)^2+\left(y-1\right)^2\)

12 tháng 8 2018

cảm ơn bạn

8 tháng 9 2019

\(x^2-y^2+4x+4\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

\(4x^2-y^2+8\left(y-2\right)\)

\(=4x^2-\left(y^2-8y+16\right)\)

\(=4x^2-\left(y-4\right)^2\)

\(=\left(2x+y-4\right)\left(2x-y+4\right)\)